The largest database of trusted experimental protocols

Rabbit anti yap

Manufactured by Santa Cruz Biotechnology
Sourced in United States

Rabbit anti-YAP is a primary antibody that specifically recognizes the Yes-associated protein (YAP), a transcriptional coactivator that plays a central role in the Hippo signaling pathway. This antibody can be used to detect and study the expression and localization of YAP in various biological samples.

Automatically generated - may contain errors

9 protocols using rabbit anti yap

1

Immunohistochemical Analysis of Cellular Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
Formalin-fixed paraffin embedded sections were dewaxed and rehydrated. Sections were treated with 3% hydrogen peroxide in methanol for 30 min to block endogenous peroxidase activity. Antigen retrieval was performed in 10 mM sodium citrate buffer pH6 at 95°C for 40 min. To block non-specific binding sites, tissues were incubated with 1.5% normal serum (Vector Laboratories, Burlingame, CA, USA) for 30 min. Next, they were incubated with mouse anti-Argpyrimidine (mAb6B, 1:2000), rabbit anti-YAP (Santa Cruz (Dallas, TX, USA), H125, 1:100), mouse anti-Ki67 (Dako, Agilent Technologies, Santa Clara, CA, USA, 1:100), mouse anti-Glo1 (BioMac (Leipzig, Germany), 1:100) and mouse anti-vimentin (Ventana, Roche, 1:4) antibodies overnight at 4°C followed by incubation with an anti-mouse or anti-rabbit biotinylated secondary antibody (Vector Laboratories) for 30 min at room temperature (RT). Sections were then stained with avidin-biotin-peroxidase complex (Vectastain ABC Kit, Vector Laboratories) for 30 min followed by staining with 3,3’ diaminobenzidine tetrachloride (DAB). Slides were finally counterstained with hematoxylin, dehydrated and mounted with DPX (Sigma-Aldrich). Tissue sections incubated without primary antibody showed no detectable immunoreactivity.
+ Open protocol
+ Expand
2

Western Blot Analysis of Protein Expression

Check if the same lab product or an alternative is used in the 5 most similar protocols
Proteins were loaded on SDS-PAGE and electro-transferred on nitrocellulose membranes. Immunoblotting was performed according to the manufacturer’s instructions. The following primary antibodies were used: mouse-anti-Cbfβ (Santa Cruz Biotechnology Cat# sc-56751, RRID:AB_781871), rabbit-anti-MMP13 (Abcam Cat# ab39012, RRID:AB_776416), rabbit-anti-Yap (Santa Cruz Biotechnology Cat# sc-15407, RRID:AB_2273277), mouse-anti-GAPDH (Santa Cruz Biotechnology Cat# sc-365062, RRID:AB_10847862), mouse-anti-Active-β-catenin(Millipore Cat# 05–665, RRID:AB_309887), rabbit-anti-Smad3 (Cell Signaling Technology Cat# 9513, RRID:AB_2286450), and rabbit-anti-pSmad3 (Cell Signaling Technology Cat# 9520 (also 9520 S, 9520 P), RRID:AB_2193207). Secondary antibodies were goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology Cat# sc-2004, RRID:AB_631746), and rabbit anti-mouse IgG-HRP (Santa Cruz Biotechnology Cat# sc-358917, RRID:AB_10989253). Quantification of Western blot area was performed by ImageJ.
+ Open protocol
+ Expand
3

Western Blot Analysis of Apoptosis Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
Western blot was done by running 10% SDS-PAGE, following standard blotting protocol. Primary antibodies used in this study include: rabbit anti-cleaved Caspase 3 (1:1000, Cell Signaling), rabbit anti-YAP (1:1000, Santa Cruz), rabbit anti-Phospho-YAP (1:500, Cell Signaling), rabbit anti-Lats1 (1:500, Cell Signaling), rabbit anti-Phospho-Lats1 (1:500, Cell Signaling), rabbit anti-Phospho-Mst1/2 (1:500, Cell Signaling), and mouse anti-α-Tubulin (1:2000, Sigma) antibodies. Secondary antibodies are donkey anti-rabbit or mouse IgG antibodies (Amersham).
+ Open protocol
+ Expand
4

Immunocytochemistry of iPS-derived Neurons

Check if the same lab product or an alternative is used in the 5 most similar protocols
iPS-derived neurons were fixed in 4% PFA, and then permeabilized by incubation with 0.1% Triton X-100 in PBS for 10 min at room temperature (RT). After blocking with blocking buffer (50 mM Tris-HCl pH 6.8, 150 mM NaCl, and 0.1% Triton X-100) containing 5 mg/mL BSA for 60 min at RT, sections were incubated with primary antibody for 60 min or 180 min (only for 6E10), and finally with secondary antibodies for 60 min at RT. The antibodies used for immunocytochemistry were diluted as follows: rabbit-anti-YAP (1:100, #14074 S, Cell Signaling Technology, Danvers, MA, USA), which was raised against amino acids around Pro435 of human YAP isoform 1; rabbit-anti-YAP (1:200, sc-15407, Santa Cruz Biotechnology, Dallas, TX, USA), which was raised against amino acids 206–330 of human YAP; rabbit-anti-YAPdeltaC (1:2000)17 (link); mouse-anti-Aβ (1:250, clone 6E10, SIG-39300, Covance, NJ, USA); anti-pSer46-MARCKS antibody (1:2000, ordered from GL Biochem Ltd., Shanghai, China); Cy3-conjugated anti-mouse IgG (1:500, 715-165-150, Jackson Laboratory, Bar Harbor, ME, USA); and Alexa Fluor 488–conjugated anti-rabbit IgG (1:1000, A11008, Molecular Probes, Eugene, OR, USA).
+ Open protocol
+ Expand
5

Immunofluorescence Assay of Cartilage Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
The following primary antibodies were used: mouse-anti-Cbfβ (Santa Cruz Biotechnology Cat# sc-56751, RRID:AB_781871), mouse-anti-Col2α1 (Santa Cruz Biotechnology Cat# sc-52658, RRID:AB_2082344), rabbit-anti-MMP13 (Abcam Cat# ab39012, RRID:AB_776416), rabbit-anti-ADAMTS5 (Santa Cruz Biotechnology Cat# sc-83186, RRID:AB_2242253), rabbit-anti-Sox9 (Santa Cruz Biotechnology Cat# sc-20095, RRID:AB_661282), rabbit-anti-Yap (Santa Cruz Biotechnology Cat# sc-15407, RRID:AB_2273277), rabbit-anti-Dkk1 (Cell Signaling Technology Cat# 48367, RRID:AB_2799337), and mouse-anti-Active-β-catenin(Millipore Cat# 05–665, RRID:AB_309887). Imaging was done with a Leica DMLB Microscope and a Leica D3000 fluorescent microscope and were quantified by Image J software.
+ Open protocol
+ Expand
6

Quantifying YAP Subcellular Localization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Antibodies used in the paper were as follows: mouse and rabbit anti-SPTAN1 (Santa Cruz and CST); mouse anti-SPTBN1 (Santa Cruz); rabbit anti-YAP (Santa Cruz), rabbit anti-pYAP (CST); rabbit anti-pLATS1 and anti-LATS1 (CST); mouse α-tubulin (Sigma). Secondary antibodies used were either from Jackson immunoresearch or from Invitrogen. DNA was stained with DAPI 1:1,000 and samples imaged with a Zeiss 710 or a Leica SP5 confocal microscope. Quantification of YAP localisation was scored in three categories: N = nuclear; N/C = nuclear and cytoplasmic and C = cytoplasmic. Cells were assessed over three independent experiments counting 350–500 cells per condition.
+ Open protocol
+ Expand
7

Immunoblotting Analysis of Cell Signaling

Check if the same lab product or an alternative is used in the 5 most similar protocols
Proteins were loaded on SDS-PAGE and electro-transferred on nitrocellulose membranes. Immunoblotting was performed according to the manufacturer’s instructions. The following primary antibodies were used: mouse-anti-Cbfβ (Santa Cruz Biotechnology Cat# sc-56751, RRID:AB_781871), rabbit-anti-MMP13 (Abcam Cat# ab39012, RRID:AB_776416), rabbit-anti-Yap (Santa Cruz Biotechnology Cat# sc-15407, RRID:AB_2273277), mouse-anti-GAPDH (Santa Cruz Biotechnology Cat# sc-365062, RRID:AB_10847862), mouse-anti-Active-β-catenin(Millipore Cat# 05–665, RRID:AB_309887), rabbit-anti-Smad3(Cell Signaling Technology Cat# 9513, RRID:AB_2286450), and rabbit-anti-pSmad3 (Cell Signaling Technology Cat# 9520 (also 9520S, 9520P), RRID:AB_2193207). Secondary antibodies were goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology Cat# sc-2004, RRID:AB_631746), and rabbit anti-mouse IgG-HRP (Santa Cruz Biotechnology Cat# sc-358917, RRID:AB_10989253). Quantification of Western blot area was performed by ImageJ.
+ Open protocol
+ Expand
8

Cartilage Extracellular Matrix Regulation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The following primary antibodies were used: mouse-anti-Cbfβ (Santa Cruz Biotechnology Cat# sc-56751, RRID:AB_781871), mouse-anti-Col2α1 (Santa Cruz Biotechnology Cat# sc-52658, RRID:AB_2082344), rabbit-anti-MMP13 (Abcam Cat# ab39012, RRID:AB_776416), rabbit-anti-ADAMTS5 (Santa Cruz Biotechnology Cat# sc-83186, RRID:AB_2242253), rabbit-anti-Sox9 (Santa Cruz Biotechnology Cat# sc-20095, RRID:AB_661282), rabbit-anti-Yap (Santa Cruz Biotechnology Cat# sc-15407, RRID:AB_2273277), rabbit-anti-Dkk1 (Cell Signaling Technology Cat# 48367, RRID:AB_2799337), and mouse-anti-Active-β-catenin(Millipore Cat# 05–665, RRID:AB_309887). Imaging was done with a Leica DMLB Microscope and a Leica D3000 fluorescent microscope and were quantified by Image J software.
+ Open protocol
+ Expand
9

Immunofluorescence Imaging of Podocytes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Podocytes were planted on cover slides in six-well plates. After subjected to various treatments, differentiated podocytes were fixed with 4 % paraformaldehyde at room temperature for 10 min, and then treated with 0.1 % Triton X-100 for 10 min, blocked with 1 % bovine serum albumin for 20 min at room temperature, and incubated with rabbit anti-YAP (Santa Cruz, USA, 1:250) overnight at 4 °C. After incubated with the goat anti-rabbit Alexa Fluor 488 (Cell Signaling Technology, USA, 1:1000) for 1 h at room temperature, podocytes were stained with phalloidin (Cytoskeleton, USA, 1:500) for 30 min and then with DAPI (Sigma, St Louis, MO) for 5 min at room temperature. Photomicrographs were taken with laser confocal microscopy (LCSM, Zeiss KS 400, Postfach, Germany). All images were analyzed by two investigators blinded to the identity of the samples.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!