The largest database of trusted experimental protocols

Video camera

Manufactured by Philips
Sourced in Netherlands

The Philips video camera is a high-quality imaging device designed to capture digital video footage. It features a sensitive image sensor and advanced optics to record clear, detailed video. The core function of this product is to provide users with a reliable and versatile tool for capturing visual information.

Automatically generated - may contain errors

2 protocols using video camera

1

Whole-cell Voltage Clamp Recordings of Cones

Check if the same lab product or an alternative is used in the 5 most similar protocols
Whole-cell voltage clamp recordings were made from cones. The recording chamber containing the isolated retina was mounted on a Nikon Eclipse E2000FN microscope (Nikon, Japan) and viewed with a Nikon 60× water immersion objective with infrared differential interference contrast and a video camera (Philips, Netherlands). Recording electrodes were pulled from borosilicate glass (BF-150-110-10; Sutter Instruments, Novato, CA, USA) with a Flaming/Brown micropipette puller (Model P-1000; Sutter Instruments, Novato, CA, USA). The impedances ranged from 8 MΩ to 12 MΩ when filled with pipette medium and measured in bathing solution. Pipettes were connected to an Axopatch 200A patch clamp amplifier (Molecular Devices, Sunnyvale, CA; four-pole low-pass Bessel filter setting, 2 kHz). Signal software (v. 3.07; Cambridge Electronic Design (CED), Cambridge, UK) was used to generate voltage command outputs and to acquire data. Signal software (v. 3.07; CED), MatLab (v2016b, MathWorks), Igor.pro (WaveMetrics, Portland, OR, USA) and Origin Pro (v8, Origin Lab Corporation), were used to analyze the data. All data shown are corrected for the junction potential.
+ Open protocol
+ Expand
2

Voltage-Clamp Recordings of GFP-Labeled Ganglion Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Whole-cell voltage-clamp recordings were performed from GFP-labeled GCs in retinas mounted (GC side up) in a recording chamber (Warner Instruments, Hamden, CT, USA). The recording chamber was mounted on a Nikon Eclipse E2000FN microscope (Nikon, Tokyo, Japan) and viewed with a Nikon 60x water immersion objective with infrared differential interference contrast and a video camera (Philips, Eindhoven, the Netherlands). The GFP-labeled cells were identified using a short flash of 450–490 nm light.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!