The largest database of trusted experimental protocols

Titan krios cryo stem

Manufactured by Thermo Fisher Scientific

The Titan Krios cryo-STEM is a high-resolution transmission electron microscope designed for cryogenic sample imaging. It provides high-contrast, high-resolution imaging of biological samples in their native state.

Automatically generated - may contain errors

2 protocols using titan krios cryo stem

1

Cryo-EM Imaging of Assembled Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols
Five μL of the assembled protein was pipetted onto glow-discharged Quantifoil holey carbon TEM grids (Electron Microscopy Sciences). Excess fluid was removed before the sample was flash frozen hydrated by plunging into a bath of liquid ethane slush using the FEI Vitrobot Mark IV [56 (link)]. The grids were stored in liquid nitrogen until imaged with the Tecnai G2 F20, operated at an accelerating voltage of 200 kV or Titan Krios cryo-STEM (FEI) at an accelerating voltage of 300 kV. Images were recorded under low dose conditions with a Gatan Ultrascan 4000 CCD camera at a nominal magnification of 50,000 X corresponding to a pixel size of 0.22 nm and a defocus level ranging from − 1.5 to − 2.5 μm.
+ Open protocol
+ Expand
2

Cryo-STEM Imaging of DRP1 Helices

Check if the same lab product or an alternative is used in the 5 most similar protocols
Tomograms of the GMP-PNP-bound DRP1 helices attached with Ni-NTA-Nanogold were acquired with the FEI Tecnai G2 F20 cryo-STEM at 200 kV. Images were recorded at a nominal magnification of 25,000X corresponding to a pixel size of 0.48 nm (for the NanoVan-stained samples). The tomograms for DRP1 helices unbound to the Nanogold were collected with the FEI Titan Krios cryo-STEM at 300 kV using a tilt range between −60° to 60° at 18,300 fold magnification corresponding to a pixel size of 0.820 nm. The images were aligned, cropped, and binned using IMOD [61 (link)–63 (link)]. One representative tomogram (acquired in cryo condition), binned twice to 1.64 nm/pixel, was manually traced in 3dmod, Version 4.5 [60 (link)]. Chimera was used to compare the DRP1 model helices to the extracted helix data traced in 3dmod. Additionally, the pitches and diameters of the helices were manually measured on the digital images.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!