The largest database of trusted experimental protocols

Sodium 4 pba

Manufactured by Merck Group
Sourced in United States

Sodium 4-PBA is a laboratory chemical compound primarily used as a chemical reagent in research and analytical applications. It is a sodium salt of 4-phenylbutyric acid, a short-chain fatty acid. Sodium 4-PBA is a crystalline solid that is soluble in water and other polar solvents. Its core function is as a chemical building block and analytical tool in various scientific investigations, but a detailed description of its intended use would require more context.

Automatically generated - may contain errors

3 protocols using sodium 4 pba

1

Generation and Characterization of ABCB4 Mutants

Check if the same lab product or an alternative is used in the 5 most similar protocols
The generation of the ABCB4 mutants G68R, G228R, D459H and A934T has been previously described [13 (link),16 (link)]. Madin-Darby canine kidney MDCK-II cells and human embryonic kidney AD-293 cells were obtained from ATCC (LGC Standards Barcelona, Spain) and Agilent Technologies (Santa Clara, CA, USA), respectively. The mouse monoclonal anti-ABCB4 antibody (clone P3II-26) was purchased from Millipore (Billerica, Masachussets, USA). The rabbit anti-calnexin antibody was obtained from StressMarq (Victoria, Canada), and the anti-Na/K-ATPase antibody was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-mouse AlexaFluor594-conjugated and anti-rabbit AlexaFluor488-conjugated secondary antibodies were from Molecular Probes (Eugene, OR, USA). Sodium 4-PBA, curcumin, cycloheximide, brefeldin A and standard lipids (phosphatidic acid, phosphatidylinositol, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin) were provided by Sigma (St. Louis, MO, USA). [3H]-choline (60–90 Ci/mmol) was purchased from Perkin Elmer (Massachusetts, USA). All other reagents were of analytical grade.
+ Open protocol
+ Expand
2

Assessing Cellular Senescence with β-Galactosidase Staining

Check if the same lab product or an alternative is used in the 5 most similar protocols
A Senescence β-Galactosidase Staining Kit (Cell Signaling Technology, Inc., Danvers, MA, USA) was used to assess cellular senescence, in accordance with the manufacturer’s instructions. Nuclei were counterstained with Hoechst. SA-β-gal-positive cells and total cell numbers in a field of view were automatically counted by an IN Cell Analyzer 6000, and the positive ratio was calculated. For assessing the effects of different chemical compounds on cellular senescence, 3×104 cells were seeded on day 0, cultured with each compound for two weeks, and the SA-β-gal-positive cell ratio was then calculated. The compounds used in these analyses included 2 mM sodium 4-PBA, (Sigma-Aldrich, St. Louis, MO, USA), and 2.5 mM N-Acetyl-L-cysteine (NAC, Sigma-Aldrich).
+ Open protocol
+ Expand
3

Quantifying Intracellular Aggregates: A Multimodal Approach

Check if the same lab product or an alternative is used in the 5 most similar protocols
A PROTEOSTAT Aggresome Detection kit (Enzo Life Sciences Inc.) was used to detect aggresomes in cells, in accordance with the manufacturer’s instructions. Nuclei were counterstained with Hoechst. Cytoplasm was stained with HCS CellMask Deep Red Stain (Thermo Fisher Scientific Inc.). All images were collected with an IN Cell Analyzer 6000. To assess the effects of different chemical compounds on aggregate accumulation, cells were cultured with each compound and aggregate intensities were evaluated. The compounds used in these analyses included trimethylamine N-oxide (TMAO, Sigma-Aldrich), sodium 4-PBA, Sigma-Aldrich), geldanamycin (TCI, Tokyo, Japan), 2-hydroxypropyl-β-cyclodextrin (Sigma-Aldrich), rapamycin (Sigma-Aldrich), and valproic Acid (VPA, FUJIFILM Wako Pure Chemical Corporation).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!