The largest database of trusted experimental protocols

Quadrupole mass analyser

Manufactured by Agilent Technologies
Sourced in United Kingdom

The Quadrupole mass analyser is a type of mass spectrometer that uses a static electric field and a radio frequency (RF) electric field to separate and detect ions based on their mass-to-charge ratio. It consists of four parallel metal rods that create a quadrupolar electric field, which allows the selective transmission of ions with a specific mass-to-charge ratio.

Automatically generated - may contain errors

2 protocols using quadrupole mass analyser

1

GC-MS Analysis of Lipid Extracts

Check if the same lab product or an alternative is used in the 5 most similar protocols
GC-MS was performed on both AE and TLE using a 7890A Series chromatograph attached to a 5975C Inert XL mass-selective detector with a quadrupole mass analyser (Agilent Technologies, Cheadle, UK). The carrier gas used was helium, and the inlet/column head-pressure was constant. A splitless injector was used and maintained at 300 °C. The GC column was inserted directly into the ion source of the mass spectrometer. The ionisation energy of the mass spectrometer was 70 eV and spectra were obtained by scanning between m/z 50 and 800. Two different column phases were used. General screening of both AE and TLE was performed using a DB-5 ms (5%-phenyl)-methylpolysiloxane column (30 m × 0.250 mm × 0.25 μm; J&W Scientific, Folsom, CA, USA). The temperature for this column was set at 50 °C for 2 min, then raised by 10 °C/min to 325 °C, where it was held for 15 min. The TLE was also analyzed with a HT-DB1, 100% Dimethylpolysiloxane (15 m × 0.320 mm × 0.1 µm) (J&W Scientific, Folsom, CA, USA). The injector was maintained at 350 °C. The temperature of the oven was set at 50 °C for 2 min, and then raised by 10 °C min−1 to 350 °C, where it was held for 15 min.
+ Open protocol
+ Expand
2

GC-MS Analysis of Miliacin and Internal Standards

Check if the same lab product or an alternative is used in the 5 most similar protocols
GC-MS was carried out on all samples using an Agilent 7890 A Series chromatograph attached to an Agilent 5975 C Inert XL mass-selective detector with a quadrupole mass analyser (Agilent technologies, Cheadle, Cheshire, UK). A splitless injector was used and maintained at 300 °C. The carrier gas used was helium, and inlet/column head-pressure was constant. The column (DB-5 ms) was coated with 5% phenyl-methylpolysiloxane column (30 m × 0.250 mm × 0.25 μm; J&W Scientific, Folsom, CA, USA). The oven temperature was set at 50 °C for 2 min, then raised by 10 °C min−1 until 325 °C was reached, where it was held for 15 min until the end of the run. The GC column was inserted directly into the ion source of the mass spectrometer. The ionisation energy of the mass spectrometer was 70 eV and spectra were obtained in scanning mode between m/z 50 and 800. The MS was also used in selected ion monitoring (SIM) mode with the oven temperature set at 50 °C for 1 min, then raised by 20 °C min−1 until 280 °C, then raised at 10 °C min−1 until reaching 325 °C, where it was held for 10 min until the end of the run. In SIM mode, a first group of ions (m/z 189, m/z 204, m/z 231, m/z 425, m/z 440) corresponding to miliacin fragmentation were monitored. After 16 min, a second group of ions (m/z 57, m/z 71, m/z 85, m/z 478, m/z 506) were monitored to record the internal standard.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!