The largest database of trusted experimental protocols

Carl apotome axiovert 200 m fluorescence microscope

Manufactured by Zeiss
Sourced in Germany

The Carl Zeiss Apotome Axiovert 200 M Fluorescence Microscope is a versatile lab equipment designed for advanced fluorescence imaging. It features a modular design and a range of optical configurations to support various imaging techniques. The core function of this microscope is to provide high-quality fluorescence imaging capabilities for research and analysis purposes.

Automatically generated - may contain errors

3 protocols using carl apotome axiovert 200 m fluorescence microscope

1

Proximity Ligation Assay for E-cadherin Complexes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were cultured on glass coverslips in 6-well plates to at least 80% confluence and fixed in ice-cold methanol for 20 min for both proximity ligation assays (PLA) E-cadherin/b-catenin and E-cadherin/p120. PLA was performed using Duolink Detection kit (Olink Bioscience, Sweden), according to the manufacturer’s instructions for Duolink Blocking solution and Detection protocol. Briefly, slides were blocked, incubated with antibodies directed against E-cadherin cytoplasmic domain (610,182, BD Biosciences or Clone 24E10, #3195, Cell Signaling, USA), b-catenin (C2206, Sigma-Aldrich, USA) and p120 (610,134, BD Biosciences, USA), followed by incubation with the secondary PLA probes (anti-mouse Minus and anti-rabbit Plus) conjugated to unique oligonucleotides. Amplification template oligonucleotides were hybridized to pairs of PLA probe and circularized by ligation. Rolling circle amplification was performed and detection of amplified DNA was possible by addition of complementary oligonucleotides labeled with Cy3 fluorophore. Coverslips were mounted on Vectashield with DAPI (Vector Laboratories, USA). Images were acquired on a Carl Zeiss Apotome Axiovert 200 M Fluorescence Microscope (× 20 and × 40 objectives; Carl Zeiss, Germany) with an Axiocam HRm camera and processed with the Zeiss Axion Vision 4.8 software. Quantification of PLA signals was achieved using BlobFinder V3.2.42.
+ Open protocol
+ Expand
2

Immunofluorescence Staining of S100P and E-cadherin

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were cultured to confluent monolayers on glass coverslips and fixed in ice-cold methanol for 20 min, except for S100P stained cells, which were fixed with 4% paraformaldehyde for 20 min. Following a 10 min PBS wash, cells fixed with paraformaldehyde were incubated in NH4Cl 50 mM for 10 min, and permeabilized with 0.1% Triton X-100 in PBS for 5 min, at room temperature. Cells were blocked with 3% BSA in PBS and stained with primary antibodies, rabbit anti-S100P (ab133554, Abcam, UK) and mouse anti-E-cadherin (610,182, BD Biosciences, USA), followed by a 1 h incubation in the dark with Alexa 488 or Alexa 594-conjugated secondary IgG (Invitrogen, Thermo Fisher Scientific, USA). Coverslips were mounted with Vectashield with DAPI (Vector Laboratories, USA) and images acquired on a Carl Zeiss Apotome Axiovert 200 M Fluorescence Microscope (× 20 and × 40 objectives; Carl Zeiss, Germany) with an Axiocam HRm camera. Images were processed with the Zeiss Axion Vision 4.8 software.
+ Open protocol
+ Expand
3

Microscopy Imaging of Bacterial and Cancer Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bacteria images were acquired with a Carl Zeiss Apotome Axiovert 200M Fluorescence Microscope (Carl Zeiss, Jena, Germany). Images were taken with an Axiocam HRm camera and processed with Zeiss Axion Vision 4.8 software. All the experiments were performed in triplicate.
AGS (gastric adenocarcinoma) cells were analyzed on an inverted epi-fluorescence microscope, (Axiovert 200M, Zeiss,Germany). Images were acquired with a Leica TCP SP2 AOBS camera and processed LAS AF using Lite software (Leica Microsystems CMS GmbH).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!