The total genistein content was determined after the dilution of formulations in methanol. To estimate the genistein association, nanoemulsions were directly added to ultrafiltration membranes (100,000 Da cutoff, Ultrafree; Merck Millipore) and centrifuged at 15,000 rpm for 15 minutes. The association efficiency (%) was estimated by the difference between the total and free-genistein concentrations.
Zetasizer 3000hs
The Zetasizer 3000HS is a dynamic light scattering (DLS) instrument designed for the measurement of particle size and zeta potential. It utilizes a high-sensitivity detection system to analyze the Brownian motion of particles suspended in a liquid and determine their size distribution and surface charge characteristics.
Lab products found in correlation
119 protocols using zetasizer 3000hs
Nanoemulsion Characterization and Genistein Content
The total genistein content was determined after the dilution of formulations in methanol. To estimate the genistein association, nanoemulsions were directly added to ultrafiltration membranes (100,000 Da cutoff, Ultrafree; Merck Millipore) and centrifuged at 15,000 rpm for 15 minutes. The association efficiency (%) was estimated by the difference between the total and free-genistein concentrations.
Comprehensive Physical Characterization
Nanomaterials Characterization by DLS
Nanoemulsion Characterization and Hydrogel Formulation
Characterization of CSO-SA Micelles
The size and zeta potential of CSO–SA micelles and CSO–SA/DrzBS micelles were measured by dynamic light scattering (Zetasizer 3000HS, Malvern Instruments Ltd., UK) in deionized water. Their morphology was examined by transmission electronic microscopy (TEM, Stereoscan, Leica, England).
Characterization of Dispersed SWCNTs
To determine particle size and zeta potential, a sample of 200 μL (with a concentration of 50 μg·mL−1) was dispersed in deionized water to a final volume of 3 mL. Particle size and zeta potential were measured using laser particle analysis (Malvern Zetasizer 3000HS). A volume-weighted Gaussian size distribution was fit to the autocorrelation functions to obtain the particle size and zeta potential values.
The atomic fractions of C, O, and N in the different SWCNTs samples were determined by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). Fourier-transform infrared (FTIR) spectra in the range from 500 to 4000 cm−1 were recorded with a FTIR spectrometer (Nicolet IS10). X-ray diffraction (XRD) analysis was conducted using a BRUKER D8 X-ray diffractometer in the 2θ range of 0–100° at a scanning rate of 5°·min−1.
For atomic force microscopy (AFM) measurements, different SWCNT dispersions (ethanol/ultrapure water = 1:1) with a concentration of 0.01% were dripped on freshly cleaved mica and observed using an AFM (Dimension Icon, Bruker AXS).
Characterization of Ad Nanocomplexes
Characterizing mPEG-PLGA Nanoparticles
Microbubble Preparation via Vibration
Nanoparticle Characterization by Zetasizer
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!