The largest database of trusted experimental protocols

Agar gel

Manufactured by Nacalai Tesque
Sourced in Japan

Agar gel is a solidifying agent derived from red seaweed. It is commonly used as a growth medium in microbiological and biotechnological applications. Agar gel provides a stable, nutrient-rich substrate for the cultivation of various microorganisms, such as bacteria, fungi, and algae.

Automatically generated - may contain errors

3 protocols using agar gel

1

Tardigrade Mating Behavior Observation

Check if the same lab product or an alternative is used in the 5 most similar protocols
Two tardigrades, namely, Paramacrobiotus sp. TYO strain and M. shonaicus, were used for this investigation. These tardigrades were provided by Dr. Takekazu Kunieda and Dr. Kazuharu Arakawa, respectively. The culture conditions were the same as those described in Sugiura et al. [13 (link)]. The tardigrades were placed in plastic dishes containing 1.2% agar gel (Nacalai Tesque, Kyoto, Japan) topped with mineral water (Volvic) and then kept in the dark at 20℃. The rotifer Lecane inermis and the green alga Chlorella vulgaris (Recenttec KK, Tokyo, Japan) were added to the culture as food sources. The water was changed every 3–5 days, and the dishes were renewed every 2–3 weeks. Sample preparations for mating observations also followed Sugiura et al. [13 (link)]. Females in stage 3–4 that showed tightly packed ovary were isolated in a separate culture for at least one week, and males with testes were separated into a different culture to prevent unexpected mating. Observations until this step were performed under a stereomicroscope (SZX10, Olympus, Tokyo, Japan).
+ Open protocol
+ Expand
2

Culturing Paramacrobiotus and Milnesium Tardigrades

Check if the same lab product or an alternative is used in the 5 most similar protocols
Paramacrobiotus sp. TYO strain and M. shonaicus were cultured using the methods described in Sugiura et al. (2019) . Plastic dishes (AS ONE, Japan), either 30 mm or 90 mm diameter, with 1.2% agar gel (nacalai tesque, Japan) at the bottom were filled with Volvic water and maintained in the dark at 20°C. The rotifer Lecane inermis and green alga Chlorella vulgaris (Recenttec, Japan) were used as food. The water was changed twice each week, and the plastic dishes were replaced once each month. The tardigrades were observed under a stereomicroscope Mz.95 (Leica, Germany) or SZH10 (Olympus, Japan) and were photographed and videoed with an attachable camera TG-5 (Olympus).
+ Open protocol
+ Expand
3

Tardigrade Culture and Mating Preparation

Check if the same lab product or an alternative is used in the 5 most similar protocols
Tardigrade culture conditions and specimen preparation Two tardigrades, namely, Paramacrobiotus sp. TYO strain and M. shonaicus, were used for this investigation. These tardigrades were provided by Dr. Takekazu Kunieda and Dr. Kazuharu Arakawa, respectively. The culture conditions were the same as those described in Sugiura et al. [13] . The tardigrades were placed in plastic dishes containing 1.2% agar gel (Nacalai Tesque, Kyoto, Japan) topped with mineral water (Volvic) and then kept in the dark at 20℃. The rotifer Lecane inermis and the green alga Chlorella vulgaris (Recenttec KK, Tokyo, Japan) were added to the culture as food sources. The water was changed every 3-5 days, and the dishes were renewed every 2-3 weeks.
Sample preparations for mating observations also followed Sugiura et al. [13] . Females in stage 3-4 that showed tightly packed ovaries were isolated in a separate culture for at least one week, and males with testes were separated into a different culture to prevent unexpected mating. Observations until this step were performed under a stereomicroscope (SZX10, Olympus, Tokyo, Japan).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!