The largest database of trusted experimental protocols

Manual pellet press

Manufactured by Parr

The Manual Pellet Press is a device used to compress powdered materials into solid pellets. It operates through a manual pressing mechanism, allowing the user to apply force to the powder and shape it into a compact, uniform pellet. The core function of this equipment is to provide a simple and versatile solution for transforming powdered substances into a more manageable solid form.

Automatically generated - may contain errors

2 protocols using manual pellet press

1

Calorimetric Analysis of Test Meals

Check if the same lab product or an alternative is used in the 5 most similar protocols
The energy (kcal/g) of each test meal was determined using bomb calorimetry. Each test meal was prepared identical as if it were to be served to a participant. Meals were homogenized using a food-grade commercial blender (Model HBH450, Hamilton Beach Commercial, Glen Allen, VA) on high setting for 1 min and then passed through a 2 mm sieve (Advantech 2.00 mm USA standard testing sieve No. 10, New Berlin, WI). Aliquots were weighed and then lyophilized at −55 °C using a Uni-Trap Model 10–100 (The Virtis Company, Gardiner, NY). Lyophilized samples were ground and passed through a 1 mm screen before being pelleted into duplicate ~1.00 g pellets using a manual pellet press (Parr Instrument Co., Moline, IL). Pellets were placed within a model 1108 oxygen bomb (Parr Instrument Co.) and bombed in a 6200 Isoperibol calorimeter (Parr Instrument Co.). Each test meal was analyzed in duplicate with an accepted CV of less than 2 % between duplicate samples. Calorimetry standard 1.00 g benzoic acid pellets (Parr Instrument Co.) were used to calibrate each bomb before the analysis of test meal pellets.
+ Open protocol
+ Expand
2

Miniaturized Microfluidic Glucose Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols
Following miniaturization, functionality as a platform for performing chemical assays was confirmed by performing a glucose assay on a miniaturized microPAD with a sample zone, a reagent zone, a test zone and a waste zone all connected in series by a straight channel (Fig. S1)41 (link). The reagents for the assay were deposited onto the reagent zone using a reagent pencil, which was fabricated by pressing a mixture of 66.6% w/w polyethylene glycol (Mn 2000 g/mol), 22.2% w/w graphite powder, 0.75% w/w glucose oxidase (GOx, 266 U/mg), 0.52% w/w horseradish peroxidase (HRP, 293 U/mg), and 10.0% w/w 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) into the shape of a cylindrical pellet with a diameter of 3.2 mm using a manual pellet press (Parr Instrument Company)41 (link),42 . Glucose solutions (3.5 µL) prepared in 1X PBS with concentrations of 0, 0.3, 0.6, 0.9 and 1.2 mM were applied to the sample zone of the device and a colorimetric readout was generated in the test zone. The intensity of the color produced in the test zones was measured via digital image colorimetry (DIC)43 (link), where the mean color intensity in the red channel of the test zones was measured using a smartphone (Samsung Galaxy Note 4) and the Color Grab application9 (link).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!