The largest database of trusted experimental protocols

Asylum 1 mfp 3d afm system

Manufactured by Oxford Instruments

The Asylum-1 MFP-3D AFM System is a high-performance atomic force microscope designed for advanced surface characterization. It provides nanoscale imaging, force measurement, and sample manipulation capabilities. The system features a closed-loop scanner and supports a range of AFM modes for comprehensive sample analysis.

Automatically generated - may contain errors

Lab products found in correlation

3 protocols using asylum 1 mfp 3d afm system

1

Visualizing Nanostructures of Peptides

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

Atomic Force Microscopy (AFM) images of ST14 and T14 peptides were investigated to visualize their nano structures. Samples were prepared by placing an aliquot of approximately 50 microliters (μl) of the peptide (100 micromolar (μM)) solution on the surface (9 millimeters (mm) in diameter) of a mica surface. Each sample was left on the mica for about 30 seconds (s) and then rinsed with aliquots of 100 μl of Milli-Q (ultrapure) water to remove unattached peptides. The sample on the mica surface was then air-dried for AFM observation. AFM was performed with Asylum-1 MFP-3D AFM System (Asylum Research, Santa Barbara, Calif.) using a tapping mode. The images utilized an Olympus Si tip (AC240FS). The cantilever's free resonance frequency was 70 kHz. Height images were recorded with 256×256 pixels resolution.

As shown in FIGS. 3 and 4, AFM morphological studies demonstrated that ST14 forms self-assembled nanofibers. Aggregates have been detected in T14, as shown in FIGS. 5 and 6.

+ Open protocol
+ Expand
2

Visualizing Peptide Nanostructures via AFM

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

Atomic Force Microscopy (AFM) images of ST14 and T14 peptides were investigated to visualize their nano structures. Samples were prepared by placing an aliquot of approximately 50 microliters (μl) of the peptide (100 micromolar (μM)) solution on the surface (9 millimeters (mm) in diameter) of a mica surface. Each sample was left on the mica for about 30 seconds (s) and then rinsed with aliquots of 100 μl of Milli-Q (ultrapure) water to remove unattached peptides. The sample on the mica surface was then air-dried for AFM observation. AFM was performed with Asylum-1 MFP-3D AFM System (Asylum Research, Santa Barbara, Calif.) using a tapping mode. The images utilized an Olympus Si tip (AC240FS). The cantilever's free resonance frequency was 70 kHz. Height images were recorded with 256×256 pixels resolution.

As shown in FIGS. 3 and 4, AFM morphological studies demonstrated that ST14 forms self-assembled nanofibers. Aggregates have been detected in T14, as shown in FIGS. 5 and 6.

+ Open protocol
+ Expand
3

Visualization of Peptide Nanostructures by AFM

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

Atomic Force Microscopy (AFM) images of ST14 (SEQ ID NO:2) and T14 (SEQ ID NO:1) peptides were investigated to visualize their nano structures. Samples were prepared by placing an aliquot of approximately 50 microliters (μl) of the peptide (100 micromolar (μM)) solution on the surface (9 millimeters (mm) in diameter) of a mica surface. Each sample was left on the mica for about 30 seconds (s) and then rinsed with aliquots of 100 μl of Milli-Q (ultrapure) water to remove unattached peptides. The sample on the mica surface was then air-dried for AFM observation. AFM was performed with Asylum-1 MFP-3D AFM System (Asylum Research, Santa Barbara, Calif.) using a tapping mode. The images utilized an Olympus Si tip (AC240FS). The cantilever's free resonance frequency was 70 kHz. Height images were recorded with 256×256 pixels resolution.

As shown in FIGS. 3 and 4, AFM morphological studies demonstrated that ST14 (SEQ ID NO:2) forms self-assembled nanofibers. Aggregates have been detected in T14 (SEQ ID NO:1), as shown in FIGS. 5 and 6.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!