The largest database of trusted experimental protocols

Prism 7.2 graph pad

Manufactured by GraphPad
Sourced in Belgium

PRISM 7.2 is a data analysis and graphing software developed by GraphPad. It provides tools for organizing, analyzing, and visualizing scientific data. The software offers a range of statistical tests, curve fitting, and data transformation capabilities to help researchers interpret their findings.

Automatically generated - may contain errors

3 protocols using prism 7.2 graph pad

1

Survival Analysis of Patient Cohorts

Check if the same lab product or an alternative is used in the 5 most similar protocols
Patient’s descriptive analysis was generated, and their differences were investigated using Student t-test for quantitative data; for qualitative data, we used either Fisher’s exact test or chi-square test. To compare overall survival (OS) between groups, the cumulative survival proportions were calculated using the product limit method of Kaplan–Meier, and differences were evaluated using the log-rank test. Only variables that achieved statistical significance in the univariate analysis were subsequently evaluated in the multivariate analysis using Cox’s proportional hazard regression model. A p value of less than 0.05 was considered statistically significant. All statistical analyses were performed using the MedCalc Statistical Software version 14.8.1 (MedCalc Software bvba, Ostend, Belgium) and PRISM 7.2 Graph PAD.
+ Open protocol
+ Expand
2

Comprehensive Statistical Analysis Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Patients’ descriptive analysis was generated, and their differences were investigated using Student’s t-test for quantitative data; normality test according to D’Agostino-Pearson was performed, and when not passed, quantitative data were compared using the Mann–Whitney test. For qualitative data, we used either the Fisher’s exact test or the Chi-square test. Overall survival analyses were carried out with the Kaplan–Meier method, and differences were evaluated using log-rank test. Only variables that achieved statistical significance in the univariate analysis were subsequently evaluated in the multivariate analysis using Cox’s proportional hazard regression model. ROC (receiver operating characteristic curve and Area Under the Curve) curves and AUC have also been calculated with the help of statistical software. A p-value of less than 0.05 was considered statistically significant. All statistical analyses were performed using the MedCalc Statistical Software version 14.8.1 (MedCalc Software, Ostend, Belgium), Prism 7.2 GraphPad, and SPSS, IBM version 23.
In vitro statistical analysis was carried out using the ANOVA followed by the nonparametric Mann–Whitney U-test or a two-tailed unpaired Student’s t-test comparisons (* p < 0.05) using the Prism 6.0 software (GraphPad San Diego, CA, USA).
+ Open protocol
+ Expand
3

Survival Analysis of Patient Cohorts

Check if the same lab product or an alternative is used in the 5 most similar protocols
Patients descriptive analysis was generated, and their differences were investigated using Student t-test for quantitative data; for qualitative data, we used either Fisher's exact test or chi-square test. To compare overall survival (OS) between groups, the cumulative survival proportions were calculated using the product limit method of Kaplan-Meier, and differences were evaluated using the log-rank test. Only variables that achieved statistical significance in the univariate analysis were subsequently evaluated in the multivariate analysis using Cox's proportional hazard regression model. A p value of less than 0.05 was considered statistically significant. All statistical analyses were performed using the MedCalc Statistical Software version 14.8.1 (MedCalc Software bvba, Ostend, Belgium) and PRISM 7.2 Graph PAD.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!