The largest database of trusted experimental protocols

Shikinic acid

Manufactured by Merck Group
Sourced in United States

Shikinic acid is a naturally occurring organic compound that serves as an intermediate in the shikimate pathway, a biosynthetic route found in plants, fungi, and some bacteria. It is a key precursor in the production of various aromatic compounds, including amino acids and secondary metabolites. Shikinic acid is primarily used in chemical and pharmaceutical research applications as a building block for the synthesis of diverse molecular structures.

Automatically generated - may contain errors

2 protocols using shikinic acid

1

Analysis of Sugars and Organic Acids

Check if the same lab product or an alternative is used in the 5 most similar protocols
The chemical composition, encompassing free sugars and organic acids was evaluated following procedures previously described by Barros et al. [20 (link)].
Free sugars were analyzed by HPLC coupled to a refraction index detector (Knauer, Smartline system 1000). The compounds were identified by chromatographic comparisons with authentic standards (D(−)-fructose, D(+)-sucrose, D(+)-glucose, D(+)-trehalose, and D(+)-raffinose pentahydrate) which were purchased at Sigma-Aldrich (St. Louis, MO, USA), as also melezitose (PanReac AppliChem ITW Reagents Co., Darmstadt, Germany) which was applied as the internal standard (IS) and used in the quantification method. Data was analyzed using Clarity 2.4 software (DataApex, Podohradska, Czech Republic), and the results were expressed in g/100 g fw.
Organic acids were evaluated using an Ultra-Fast Liquid Chromatography (UFLC, Shimadzu 20A series, Kyoto, Japan) coupled to a diode array detector. Organic acids standards (L(+)-ascorbic acid, citric acid, malic acid, oxalic acid, shikinic acid, succinic acid, fumaric acid, and quinic acid; Sigma-Aldrich, St. Louis, MO, USA) were used for identification by performing chromatographic comparisons with the peaks of the samples. These standards were also used for quantification relying on the external standard methodology. Results were expressed g/100 g fw.
+ Open protocol
+ Expand
2

HPLC analysis of phenolic compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
Acetonitrile 99.9%, of high performance liquid chromatography (HPLC) grade, and sulphuric acid were acquired from Fisher Scientific (Lisbon, Portugal). Formic acid was acquired from Panreac (Barcelona, Spain). Sugar standards [D(−)-fructose, D(+)-glucose anhydrous and D(+)-sucrose], organic acid standards (malic acid, shikinic acid; oxalic acid and quinic acid), and trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) were acquired from Sigma Chemical Co. (Saint Louis, MO, USA). Phenolic compound standards (catechin, gallic acid, isorhamnetin 3-O-glucoside, kaempferol 3-O-glucoside, kaempferol 3-O-rutinoside, myricetin, quercetin 3-O-glucoside and quercetin 3-O-rutinoside) were purchased from Extrasynthese (Genay, France). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) was obtained from Alfa Aesar (Ward Hill, MA, USA). Water was treated by means of a Milli-Q water purification system (TGI Pure Water Systems, Greenville, SC, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!