The largest database of trusted experimental protocols

Md8 airscan

Manufactured by Sartorius
Sourced in Germany

The MD8 AirScan is a compact and portable microbial air sampling device from Sartorius. It is designed to collect and analyze airborne microorganisms in controlled environments such as cleanrooms, laboratories, and production facilities. The device operates by drawing in a controlled volume of air and depositing any captured microorganisms onto a growth medium for further analysis.

Automatically generated - may contain errors

2 protocols using md8 airscan

1

Aerosolized Influenza Virus Detection

Check if the same lab product or an alternative is used in the 5 most similar protocols
About 0.05 mL of allantoic fluid of fertilized hen’s eggs, in which influenza A/Aichi/2/68 (H3N2) virus was propagated, was atomized inside the patient hood, simulating bioparticles of a patient’s cough using an electric compressor-type nebulizer, which generated mists of 1–10 µm diameter particles (NE-C16; Omron, Kyoto, Japan). Airborne particles were collected from inside and outside of the patient hood using an air sampler and a gelatin membrane filter (MD8 AirScan Sartorius AG, Göttingen, Germany) for virus detection and quantitation, as described previously (11 (link)). A total of 320 L of air was passed through the membrane at a flow rate of 80 L/min (i.e., 4 minutes sampling time). The gel membrane filter was then dissolved in 10 mL of culture medium, Minimal Essential Medium Eagle (Sigma-Aldrich, UK), (37 °C) then subjected to a conventional plaque assay using Madin-Darby canine kidney (MDCK) cells (12 (link)).
+ Open protocol
+ Expand
2

Airborne Particle Collection from Coughs

Check if the same lab product or an alternative is used in the 5 most similar protocols
Airborne particles in coughs and mists, generated in laboratory experiments to simulate coughs, were collected using an airborne particle-sampling unit composed of portable air sampler (MD8 AirScan Sartorius AG, Göttingen, Germany) connected by a flexible polyvinyl chloride hose with reinforced ends (#17085; inner diameter, 32 mm; length, 2 m; Sartorius AG) (Figure 1A) to a gelatin membrane filter (#12602-080-ALK; diameter, 8.0 cm; pore size, 3.0 µm; Sartorius AG) (Figure 1 A, C) and equipped with a cone-shaped, megaphone-like device (length, 50 cm; entrance diameter, 40 cm) made of a polycarbonate resin sheet (Figure 1 A, B) to guide the airflow to the membrane. The outer surface of the device was coated with aluminum foil to reduce the static electric charge of the inner surface.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!