The largest database of trusted experimental protocols

Microcon 3000 molecular weight cut off ultrafilter

Manufactured by Merck Group
Sourced in United States

The Microcon 3000 is a molecular weight cut-off (MWCO) ultrafilter used for the concentration and purification of macromolecules. It features a polyethersulfone membrane with a nominal MWCO of 3,000 Daltons. The Microcon 3000 is designed to separate and concentrate molecules based on their molecular weight.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using microcon 3000 molecular weight cut off ultrafilter

1

Enzymatic Phosphorylation of NAD+ Kinase

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

NAD+ kinase served as the acceptor chemical and as a controller chemical. Adenosine triphosphate served as the donor chemical. Magnesium chloride and acetic acid served as controller chemicals. Phosphorylated NAD kinase served as the acceptor product. Adenosine diphosphate served as the donor product. A solution was prepared by combining 100 microliters of a solution of NAD kinase [880 micromolar] in water with a 200 microliters of a solution of adenosine triphosphate [5 millimolar], magnesium chloride [10 millimolar], tris(hydroxymethyl)aminomethane buffer [100 millimolar, pH 7.5] in water (FIG. 1, Box 1). The reaction was allowed to incubate for 10 seconds, after which 200 microliters of a solution of 5% acetic acid in water was added (FIG. 1, Box 2). The acceptor product was separated from the adenosine triphosphate and adenosine diphosphate using a Microcon 3000 molecular weight cut off (MWCO) ultrafilter, available from Millipore Corporate Headquarters, 290 Concord Road, Billerica, Mass. 01821, USA (FIG. 1, Box 3). The NADP was measured using an x-ray fluorescence spectrometer equipped with a 50 watt chromium anode x-ray tube and a silicon drift detector (FIG. 1, Box 4). The ratio of the phosphorus x-ray fluorescence signal to sulfur x-ray fluorescence signal was 0.030501 for the NAD, and 0.264657 for the phosphorylated NAD.

+ Open protocol
+ Expand
2

Kinetic Analysis of NAD+ Phosphorylation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

NAD+ kinase served as the acceptor chemical and as a controller chemical. Adenosine triphosphate served as the donor chemical. Magnesium chloride and acetic acid served as controller chemicals. Phosphorylated NAD kinase served as the acceptor product. Adenosine diphosphate served as the donor product. A solution was prepared by combining 100 microliters of a solution of NAD kinase [880 micromolar] in water with a 200 microliters of a solution of adenosine triphosphate [5 millimolar], magnesium chloride [10 millimolar], tris(hydroxymethyl)aminomethane buffer [100 millimolar, pH 7.5] in water (FIG. 1, Box 1). The reaction was allowed to incubate for 10 seconds, after which 200 microliters of a solution of 5% acetic acid in water was added (FIG. 1, Box 2). The acceptor product was separated from the adenosine triphosphate and adenosine diphosphate using a Microcon 3000 molecular weight cut off (MWCO) ultrafilter, available from Millipore Corporate Headquarters, 290 Concord Road, Billerica, Mass. 01821, USA (FIG. 1, Box 3). The NADP was measured using an x-ray fluorescence spectrometer equipped with a 50 watt chromium anode x-ray tube and a silicon drift detector (FIG. 1, Box 4). The ratio of the phosphorus x-ray fluorescence signal to sulfur x-ray fluorescence signal was 0.030501 for the NAD, and 0.264657 for the phosphorylated NAD.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!