The largest database of trusted experimental protocols

Exactive orbitrap high performance benchtop lc ms

Manufactured by Thermo Fisher Scientific
Sourced in Germany

The Exactive Orbitrap High Performance Benchtop LC-MS is a mass spectrometry instrument designed for high-performance liquid chromatography (LC-MS) analysis. It utilizes Orbitrap technology to provide accurate mass measurements and high-resolution analysis of a wide range of small molecules and biomolecules.

Automatically generated - may contain errors

3 protocols using exactive orbitrap high performance benchtop lc ms

1

Analytical HPLC and LC-MS Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Analytical HPLC was performed on a Shimadzu LC-10Avp series HPLC system consisting of an autosampler, high-pressure pumps, column oven and PDA. HPLC conditions: C18 column (Eurospher 100-5, 250 × 4.6 mm) and gradient elution (MeCN/0.1 % (v/v) TFA 0.5/99.5 in 30 min to MeCN/0.1 % (v/v) TFA 100/0, MeCN 100 % for 10 min), flow rate 1 mL min−1. Preparative HPLC was performed on a Shimadzu LC-8a series HPLC system with PDA. LC-MS measurements were performed using an Exactive Orbitrap High Performance Benchtop LC-MS with an electrospray ion source and an Accela HPLC system (Thermo Fisher Scientific, Bremen). HPLC conditions: C18 column (Betasil C18 3 µm 150 × 2.1 mm) and gradient elution (MeCN/0.1 % (v/v) HCOOH (H2O) 5/95 for 1 min, going up to 98/2 in 15 min, then 98/2 for another 3 min; flow rate 0.2 mL min−1). NMR spectra were recorded on a Bruker AVANCE III 600 MHz instrument equipped with a Bruker cryo platform. The residual solvent signals were used as an internal reference.
+ Open protocol
+ Expand
2

Analytical and Preparative HPLC Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Analytical HPLC was performed on a Shimadzu LC-10Avp series HPLC system consisting of an autosampler, high-pressure pumps, column oven and photodiode array detector. HPLC conditions were as follows: C18 column (Eurospher 100-5, 250 × 4.6 mm) and gradient elution (MeCN/0.1% (v/v) trifluoroacetic acid (TFA) 0.5/99.5 in 30 min to MeCN/0.1% (v/v) TFA 100/0, MeCN 100% for 10 min), flow rate 1 ml min−1. Preparative HPLC was performed on a Shimadzu LC-8a series HPLC system with photodiode array detector. LC-MS measurements were performed using an Exactive Orbitrap High Performance Benchtop LC-MS with an electrospray ion source and an Accela HPLC system (Thermo Fisher Scientific, Bremen). HPLC conditions were as follows: C18 column (Betasil C18 3 μm 150 × 2.1 mm) and gradient elution (MeCN/0.1% (v/v) HCOOH (H2O) 5/95 for 1 min, going up to 98/2 in 15 min, then 98/2 for another 3 min; flow rate 0.2 ml min−1). For tandem mass spectrometry measurements, a Q Exactive Orbitrap mass spectrometer with an electrospray ion source (Thermo Fisher Scientific) was used. NMR spectra were recorded on a Bruker AVANCE III 600 MHz instrument equipped with a Bruker cryo platform. Spectra were normalized to the residual solvent signals. The infrared spectra were recorded on a JASCO FT/IR-4100 type A.
+ Open protocol
+ Expand
3

Analyzing Metabolic Profiles via LC-MS

Check if the same lab product or an alternative is used in the 5 most similar protocols
Exactive Orbitrap High Performance Benchtop LC-MS (Thermo Fisher Scientific) with an electron spray ion source and an Accela HPLC System, C18 column (Betasil C18, 150 × 2.1 mm, Thermo Fisher Scientific), solvents: acetonitrile and distilled water (both supplemented with 0.1% formic acid), flow rate: 0.2 mL/min; program: hold 1 min at 5% acetonitrile, 1–16 min 5–99% acetonitrile, hold 15 min 99% acetonitrile, 19–20 min 99% to 5% acetonitrile, hold 11 min at 5% acetonitrile. The metabolic profiles of the acquired fractions were monitored with HR-ESI-LC/MS.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!