The largest database of trusted experimental protocols

Invitrogen geneart platinum cas9 nuclease

Manufactured by Thermo Fisher Scientific

The Invitrogen GeneArt™ Platinum™ Cas9 Nuclease is a recombinant Cas9 protein derived from Streptococcus pyogenes. It is designed for use in CRISPR-Cas9 genome editing applications.

Automatically generated - may contain errors

2 protocols using invitrogen geneart platinum cas9 nuclease

1

HDAC7 Knockout in RPMI-8226 Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
To knock out HDAC7 gene expression in RPMI-8226wt cells, we designed six guide RNAs (gRNAs) specific to a sequence in the HDAC7 region. The RMPI-8226wt cells were transiently electroporated with 240 ng of each gRNA mixed with 500 ng Invitrogen GeneArt™ Platinum™ Cas9 Nuclease (Invitrogen Carlsbad, CA) using the Invitrogen Neon Transfection System (Invitrogen, Carlsbad, CA) at 1100 v, 30 ms, and 2 pulses. Subsequently, protein lysates harvested from cells with each of the six gRNAs were immunoblotted for HDAC7 to identify the gRNA that provided the most decrease of HDAC7 gene expression (5’-AAACCCCCTGGATGCACAGCCCCGGCG-3’) among the 6 gRNA. Afterward, cells with the above-mentioned gRNA were sorted as single cells in CoSTAR ultra-low cluster, 96-well plates (Corning Inc, Corning, NY), with conditioned media to allow single-cell cloning and expansion. This process was repeated once to identify sub-clones #1 and #2 with sufficient knockdown of HDAC7 gene expression.
+ Open protocol
+ Expand
2

HDAC7 Knockout in RPMI-8226 Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
To knock out HDAC7 gene expression in RPMI-8226wt cells, we designed six guide RNAs (gRNAs) specific to a sequence in the HDAC7 region. The RMPI-8226wt cells were transiently electroporated with 240 ng of each gRNA mixed with 500 ng Invitrogen GeneArt™ Platinum™ Cas9 Nuclease (Invitrogen Carlsbad, CA) using the Invitrogen Neon Transfection System (Invitrogen, Carlsbad, CA) at 1100 v, 30 ms, and 2 pulses. Subsequently, protein lysates harvested from cells with each of the six gRNAs were immunoblotted for HDAC7 to identify the gRNA that provided the most decrease of HDAC7 gene expression (5’-AAACCCCCTGGATGCACAGCCCCGGCG-3’) among the 6 gRNA. Afterward, cells with the above-mentioned gRNA were sorted as single cells in CoSTAR ultra-low cluster, 96-well plates (Corning Inc, Corning, NY), with conditioned media to allow single-cell cloning and expansion. This process was repeated once to identify sub-clones #1 and #2 with sufficient knockdown of HDAC7 gene expression.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!