C. elegans strains were cultured as previously described by Brenner [11 (link)]. Strain VS20 hjIs67[Patgl-1::atgl-1::GFP] [12 (link)] was obtained from CGC and subsequently crossed into CB1370 daf-2(e1370) and MR1000 daf-2(e1370); aak-1(tm1944); aak-2(ok524) strains. Strains MR1348 daf-2(e1370); rrEx226[sur-5p::GFP::ATGL-1::HA; rol-6(gf)] and MR1413 daf-2(e1370); rrEx239[syr-5p::GFP::ATGL-1(S303A)::HA; rol-6(gf)] are described in [9 (link)]. The strain atgl-1(tm3116) harbors a 423bp deletion of the atgl-1 gene and was obtained from National BioResource Project, Tokyo, Japan. Rabbit polyclonal antibody against ATGL-1 was raised using a synthetic peptide CTKRKVPDEPTTSKR (GenScript). Anti-PAR-5 antibody was a gift from Dr. Andy Golden. Anti-GFP (abcam ab290), anti-ubiquitin (Santa Cruz SC8017) and anti-P-14-3-3 (Cell Signaling #2981S) antibodies are available commercially.
Ctkrkvpdepttskr
CTKRKVPDEPTTSKR is a peptide sequence. It is a synthetic peptide that can be used in various research applications.
2 protocols using ctkrkvpdepttskr
C. elegans Strains and Antibodies
C. elegans strains were cultured as previously described by Brenner [11 (link)]. Strain VS20 hjIs67[Patgl-1::atgl-1::GFP] [12 (link)] was obtained from CGC and subsequently crossed into CB1370 daf-2(e1370) and MR1000 daf-2(e1370); aak-1(tm1944); aak-2(ok524) strains. Strains MR1348 daf-2(e1370); rrEx226[sur-5p::GFP::ATGL-1::HA; rol-6(gf)] and MR1413 daf-2(e1370); rrEx239[syr-5p::GFP::ATGL-1(S303A)::HA; rol-6(gf)] are described in [9 (link)]. The strain atgl-1(tm3116) harbors a 423bp deletion of the atgl-1 gene and was obtained from National BioResource Project, Tokyo, Japan. Rabbit polyclonal antibody against ATGL-1 was raised using a synthetic peptide CTKRKVPDEPTTSKR (GenScript). Anti-PAR-5 antibody was a gift from Dr. Andy Golden. Anti-GFP (abcam ab290), anti-ubiquitin (Santa Cruz SC8017) and anti-P-14-3-3 (Cell Signaling #2981S) antibodies are available commercially.
C. elegans Strains and Antibody Generation
C. elegans strains were cultured as previously described by Brenner [50 (link)]. The following alleles and strains were used: The strain RB2386 C37H5.3(ok3245) was obtained from CGC and subsequently crossed into CB1370 daf-2(e1370) and MR1000 daf-2(e1370); aak-1(tm1944); aak-2(ok524) strains. ok3245 bears a 800bp deletion that occupies almost two thirds of the gene from the C-terminal, therefore, the allele is predicted to be null. C37H5.3 DNA and its upstream ~800bp (considered as its own endogenous promoter) was amplified by PCR and subsequently cloned into pPD95.77 GFP vector to generate pMR613 (Pcgi-58::cgi-58::GFP). Extrachromosomal arrays of pMR613 was generated by standard microinjection into CB1370 daf-2(e1370) animals using rol-6 cDNA rescue fragment as co-injection marker. Strain VS20 hjIs67[Patgl-1::atgl-1::GFP] (12) was obtained from CGC and subsequently crossed into CB1370 daf-2(e1370) and MR1000 daf-2(e1370); aak-1(tm1944); aak-2(ok524) strains.
Rabbit polyclonal antibody against ATGL-1 was raised using a synthetic peptide CTKRKVPDEPTTSKR (GenScript). Rabbit polyclonal antibody against GFP was raised by McGill Animal Resources Center. WT and CGI-58-/- mouse embryonic fibroblasts (MEFs) were gifts from Dr. Rudolf Zechner and were cultured according to their recommendation. Mouse polyclonal antibody against Actin was purchased from Abcam (ab14128).
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!