The largest database of trusted experimental protocols

Silicon tip cantilever

Manufactured by Bruker
Sourced in United States

The silicon tip cantilever is a key component in atomic force microscopy (AFM) and related scanning probe microscopy techniques. It consists of a small silicon-based cantilever with a sharp tip at the end, designed to interact with a sample surface. The cantilever's deflection is measured to generate topographical and other data about the sample.

Automatically generated - may contain errors

2 protocols using silicon tip cantilever

1

Morphological Characterization of CS-AgNps

Check if the same lab product or an alternative is used in the 5 most similar protocols
The morphology of CS-AgNps was analyzed by transmission electron microscopy (TEM) using a Hitachi High-Tech HT7700 microscope (Japan) operated in “high contrast” mode and at a 100 kV acceleration potential. Samples were applied from aqueous suspension (1 mg/mL) to 300 mesh copper grids, coated with carbon and dried under vacuum.
The morphology of films (surface and cross-sections) was observed by SEM through a Verios G4 UC Scanning Electron Microscope (Thermo Scientific, Bruno, Czech Republic) equipped with an energy dispersive X-ray spectrometer (EDS, EDAX Octane Elect Super SDD detector, Ametek, Mahwah, NJ, USA). The samples were coated with 10 nm platinum using a Leica EM ACE200 Sputter coater to provide electrical conductivity and to prevent charge buildup during exposure to the electron beam.
The visualization of the surface films (unloaded and IBF-loaded F #3 sample) was carried out by atomic force microscopy (AFM) using Nanoscope IIIa-type Multimode (Digital Instruments, Tonawanda, NY, USA) equipped with an “E”-type scanner. Amplitude- and height-mode images were captured at room temperature in the air using the tapping mode with a silicon tip cantilever (Bruker Corporation, Billerica, MA, USA) operated at a resonance frequency of 275–300 kHz and at a scan rate of 1.2 Hz. The images were evaluated with the Nanoscope V614r1 software (Digital Instruments, Buffalo, NY, USA).
+ Open protocol
+ Expand
2

Atomic Force Microscopy of Nanomaterials

Check if the same lab product or an alternative is used in the 5 most similar protocols
The visualization of the films was carried out by atomic force microscopy (AFM) using Nanoscope IIIa type Multimode (Digital Instruments, Tonawanda, NY, USA) equipped with an “E”-type scanner. Amplitude- and height-mode images were captured at room temperature in the air using the tapping mode with a silicon tip cantilever (Bruker Corporation, Billerica, MA, USA) operated at a resonance frequency of 275–300 kHz and at a scan rate of 1.2 Hz. The images were evaluated with the Nanoscope V614r1 software (Digital Instruments, Buffalo, NY, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!