microscopy experiments were performed using a Nikon Ti2-A inverted
microscope. The samples are placed on the microscope’s table,
which was applied with a custom-made box to allow measurements under
inert conditions. The excitation light was from a 373 nm collimated
free-beam laser diode (LDH-D-C-375, PicoQuant), passing a clean-up
filter (370/36 BrightLine HC, Semrock) and a lambda fourth plate (355
nm, Edmund Optics). The beam was expanded using a 10× UV beam
expander (BE10-UVB, Thorlabs, Inc.) and then focused on the back-focal
plane of the objective to enable far-field microscopy. It entered
the microscope through the backside port and was mirrored to the sample
stage via a dichroic mirror (zt 375 RDC, Chroma). Emitted light from
the sample was collected by the objective and passed the dichroic
mirror to be led to a side port of the microscope. Here, it was spectrally
separated into two parts using color filters (FESH0450 and FELH0500,
Thorlabs) and a dichroic mirror (zt 514 RDC, Chroma) mounted on an
Optosplit II (Acal BFi Germany GmbH). The two resulting images represented
the wavelength regimes. The image detection was done using a back-illuminated
CCD camera (iXon Ultra 897, Andor). Time-resolved measurements were
realized by taking a series of images and subsequent post-procession
of the data with a self-written evaluation script.