The largest database of trusted experimental protocols

Su6600 schottky emission vpfe sem instrument

Manufactured by Hitachi

The SU6600 Schottky Emission VPFE-SEM instrument is a high-resolution scanning electron microscope (SEM) designed for use in various laboratory settings. The core function of this product is to provide detailed imaging and analysis of samples at the nanoscale level. It utilizes a Schottky field emission gun to generate a high-brightness electron beam, enabling high-resolution imaging and analytical capabilities.

Automatically generated - may contain errors

2 protocols using su6600 schottky emission vpfe sem instrument

1

Characterization of ITO Nanowire Networks

Check if the same lab product or an alternative is used in the 5 most similar protocols
The sheet resistances of the ITO nanowire networks were measured using a digital multimeter (LDX-M-3) with a four-point probe. Bright-field transmission electron microscopy (TEM) analyses were conducted on a JEOL JEM 2100 F microscope (JEOL, Tokyo -Japan), operated at 200 kV acceleration voltage. The scanning electron microscopy (SEM) analyses were conducted on a HITACHI SU6600 Schottky Emission VPFE-SEM instrument. The X-ray diffraction (XRD) analyses were conducted on X’Pert PRO (Almelo-Netherlands). The X-ray Photoelectron Spectroscopy (XPS) analyses were carried out with a Kratos Axis Ultra DLD spectrometer using a monochromatic Al Kα source operated at 150 W. Spectra have been charge corrected to the main line of the C 1 s spectrum set to 284.3 eV. The surface electric field was tested by the scanning near-field optical microscope (SNOM, NTMDT-Ntegra Spectra SNOM) with Kelvin probe (30 nm) under AFM mode. The AFM scanning mode is Contact Topography Mode and the scanning Rate is 8000 Hz. The scanning area is 15 μm × 15 μm.
+ Open protocol
+ Expand
2

Multi-Analytical Characterization of Materials

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bright-field transmission electron microscopy (TEM) analyses were conducted on a JEOL JEM 2100 F microscope (JEOL, Tokyo -Japan), operated at 200 kV acceleration voltage. The scanning electron microscopy (SEM) analyses were conducted on a HITACHI SU6600 Schottky Emission VP FE-SEM instrument. The X-ray diffraction (XRD) analyses were conducted on X’Pert PRO (Almelo-Netherlands). The X-ray Photoelectron Spectroscopy (XPS) analyses were carried out with a Kratos Axis Ultra DLD spectrometer using a monochromatic Al Kα source operated at 150 W. Spectra have been charge corrected to the main line of the C 1 s spectrum set to 284.3 eV.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!