The largest database of trusted experimental protocols

4 protocols using volocity 3d image software

1

Live imaging of cell division dynamics

Check if the same lab product or an alternative is used in the 5 most similar protocols
Immunofluorescence images were acquired at room temperature using ZEN 2011 software (Zeiss) on an LSM780 microscope (Zeiss) equipped with a GaAsP detector and 25×/0.8 Plan Apochromat or 40×/1.4 enhanced chemiluminescence Plan Apochromat oil differential interference contrast or 40×/1.3 enhanced chemiluminescence Plan-Neofluar oil differential interference contrast objectives (Zeiss).
In vitro live imaging of cultured cells was performed using an UltraView Vox spinning-disk confocal system (PerkinElmer) installed on an AxioObserver Z1 microscope (Zeiss). Images were recorded with an Hamamatsu electron-multiplying charge-coupled device 9100-13 camera using 40×/1.3 enhanced chemiluminescence Plan Neofluar lens (Zeiss). Acquisition of video sequences was done with the Volocity 3D image software (PerkinElmer). Multiple positions were acquired simultaneously. At each position, z stacks were captured every 3 min. Collected images were deconvolved using Huygens deconvolution suite (SVI). Nuclei volumes and cell cycle times were automatically analyzed using Definiens as described previously (Homem et al., 2013 (link), 2014 (link)).
+ Open protocol
+ Expand
2

Identification of Bi-nucleate Purkinje Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
For identification of bi-nucleate Purkinje cell heterokaryons, cerebellar sections immuno-labelled for Calbindin-D28K were viewed using a Leica SP5-AOBS confocal laser scanning microscope attached to a Leica DM I6000 inverted epifluorescence microscope. Each section was scanned along the entire length of the Purkinje cell layer, situated between the granular cell layer and molecular layer, for Purkinje cell bodies containing two separate nuclei. At least 2000 Purkinje cells from each patient sample were examined, allowing for the determination of the frequency of bi-nucleate Purkinje cells. All bi-nucleate Purkinje cells were confirmed on the confocal microscope by obtaining serial sections throughout the whole Purkinje cell body. All Z-stack and 3-dimensional imaging was created using both Leica Application Suite Advanced Fluorescence software and Volocity 3D image software (PerkinElmer, USA).
+ Open protocol
+ Expand
3

Quantitative Immunofluorescence Imaging of Purkinje Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sections were deparaffinised, hydrated and washed as above. An antigen retrieval step was performed through microwaving in sodium citrate buffer (0.01 M, pH 6.0, 5 min). Purkinje cells were labelled by single or double immunofluorescence using rabbit anti-Calbindin-D28K (1:500) (Sigma-Aldrich, UK), mouse anti-SMI-34 (phosphorylated neurofilament; 1:500) (Covance, US) and rat anti-myelin basic protein (MBP) (1:100) (Serotec, UK). Non-specific binding was blocked with 10 % normal goat serum diluted in PBS containing 0.1 % triton. Sections were incubated at 4 °C overnight with primary antibodies. Sections were then washed in PBS and incubated for 30 min in the dark with Alexa Fluor 555, goat anti-mouse (1:500), Alexa Fluor 488, goat anti-rabbit (1:500) or Alexa Fluor 555, goat anti-rat (1:500) (Invitrogen, Paisley, UK), before being washed in PBS and mounted in Vectashield medium containing the nuclear dye 4′6′-diamidino-2-phenylindole (DAPI) (H-1200, Vector Laboratories). Sections were imaged using either: 1) a Leica SP5-AOBS confocal laser scanning microscope attached to a Leica DM I6000 inverted epifluorescence microscope with Leica Application Suite Advanced Fluorescence software and Volocity 3D image software (PerkinElmer, USA); or 2) a Nikon C1 confocal microscope and EZ viewer software.
+ Open protocol
+ Expand
4

Identifying Male Purkinje and DRG Cells via FISH

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sections (8 µm) were processed and labeled as previously described.27 Fluorescent in situ hybridization (FISH) probes (mouse: chromosomes X [locus: Xqc3, green 5‐fluorescein 2′‐deoxyuridine 5′‐triphosphate (dUTP)] and Y control probe [locus: Y, red 5‐ROX dUTP]; Empire Genomics, Buffalo, NY) were applied directly to the tissue sections. DNA was denatured at 83°C for 5 minutes and then renatured with FISH probes by incubating overnight at 37°C.
Using epifluorescence microscopy, each section was scanned for Purkinje cell or DRG neurons containing the Y chromosome. Each cell was subsequently scanned using confocal microscopy acquiring 0.1‐ to 0.2 µm serial sections throughout the entire cell soma. All Z‐stack and 3‐dimensional imaging was created using both Leica Application Suite Advanced Fluorescence software and Volocity 3D image software (PerkinElmer, Waltham, MA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!