The largest database of trusted experimental protocols

Phosphoimage screen

Manufactured by Fujifilm
Sourced in Japan

The Phosphoimage screen is a specialized imaging device used in scientific research and analysis. It is designed to detect and capture the presence of radioactive phosphorus-labeled molecules, such as DNA, RNA, or proteins, within a sample. The screen functions by converting the radioactive signals into visible light patterns, which can then be analyzed and quantified using appropriate software and equipment.

Automatically generated - may contain errors

2 protocols using phosphoimage screen

1

In Vitro Assay of Viral Ribonuclease vhs

Check if the same lab product or an alternative is used in the 5 most similar protocols
Firstly, Renilla Luciferase (R-Luc) RNA fragment was transcribed from p2LUC plasmid that was linearized with restriction enzyme BamH I by T7 RNA polymerase (Promega, USA) with α-[p32]-ATP incorporation for 2 h at 37 °C. Then, the 0.9 kb runoff transcript was purified with MicroSpin G-25 columns (GE Healthcare Life science, USA).
For in vitro vhs assay, R-Luc RNA substrates (3 × 105 counts per min) was incubated with RRL translated PrV vhs or only RRL(as a negative control) in vhs assay buffer (80 mM K+, 2 mM Mg2+, 0.25 mM ATP, 0.1 mM DTT, 1.6 mM Tris–HCl, pH 7.8) at 37 °C. At the indicated time points (0, 15, 30 min), assay products were recovered by RNeasy® mini kit (QIAGEN, Center Mainz, Germany) and separated on a 1.3% formaldehyde agarose gel. All signals were transferred onto a Hybond-N+ membrane (GE Healthcare Bio-Science Corp., Piscataway, NJ, USA) and exposed to a phosphoimage screen (Fuji, Tokyo, Japan) and detected with a Bio-Imaging Analyzer (BAS-2500; Fuji).
+ Open protocol
+ Expand
2

Quantifying Reporter Gene RNA Levels

Check if the same lab product or an alternative is used in the 5 most similar protocols
Accumulation of reporter gene RNA was detected by Northern blot analysis using probe with sequences complementary to R-luc. Briefly, R-luc probes were generated by PCR with primer set (Rluc-F: TCCGCTAGAGCCACCATGAC and Rluc-R: GGCCCTTCACCTTCACGAAC). The PCR amplification conditions were 95 °C for 5 min followed by 30 cycles of denaturation at 95 °C for 1 min, annealing at 55 °C for 2 min, extension at 72 °C for 2 min, and a final extension at 72 °C for 7 min. Radiolabeled DNA probe was generated by random primer labeling with α-[p32] dATP.
Total RNA was harvested from cells co-transfected with reporter plasmid pRluc and plasmid expressing wild type (WT) vhs (HSV-1, or PrV), or PrV vhs mutants with deletion of individual boxes by RNeasy® mini kit (QIAGEN). Subsequently, total RNA was separated on a 1.3% denaturing formaldehyde gel and transferred to a Hybond-N+ membrane (GE Healthcare Bio-Science Corp., Piscataway, NJ, USA). Following UV-crosslinking fixation and pre-hybridization (for 1 h at 68 °C in pre-hybridization buffer 0.5 M sodium phosphate, 7% SDS and 1 mM EDTA), the membrane was hybridized with radiolabeled DNA probe at 68 °C overnight. After washing steps, the membrane was exposed to a phosphoimage screen (Fuji, Tokyo, Japan) and detected with a Bio-Imaging Analyzer (BAS-2500; Fuji). The relative Rluc RNA level to mock control was plotted.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!