The largest database of trusted experimental protocols

Envision multiwell reader

Manufactured by PerkinElmer

The Envision multiwell reader is a high-performance microplate reader designed for a wide range of applications in life science research and drug discovery. It offers sensitive detection across multiple detection modes, including absorbance, fluorescence, and luminescence. The Envision provides reliable and reproducible results, enabling researchers to conduct a variety of assays with confidence.

Automatically generated - may contain errors

8 protocols using envision multiwell reader

1

Screening BAFF-Blocking Antibody Clones

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 7

Clones blocking the interaction between BAFF and its three receptors were tested for their ability to cross-react with BAFF's closest related protein, APRIL. Clones were grown in a 96 well format, periplasmic fraction was extracted by osmotic shock as previously described and directly used in a binding ELISA. Nunc Maxisorp 96 well plates were coated at 1 μg/mL with either BAFF-Fc (Sino Biological), HSA (Sigma), or APRIL (Sigma) and periplasmic fraction, pre-blocked in PBS-0.1% Tween+2.5% Milk, was exposed to the coated surface. After washing in PBS-0.1% Tween, bound VNARs were detected using a peroxidase-conjugated anti-FLAG antibody (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer). As shown in FIG. 13, with the exception of B07 which showed a slight binding to APRIL, all the blocker clones appeared specific to BAFF.

+ Open protocol
+ Expand
2

Determination of Inhibitory Potency on TACI and BCMA

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 9

The biochemical IC50 for each of the five main lead molecules was determined on both TACI and BCMA by serially diluting purified monomeric VNARs in blocking buffer (PBS-0.1% Tween+2.5% Milk) supplemented with 0.5 nM BAFF-Fc (Sino Biological). The pre-blocked proteins were then exposed to Nunc Maxisorp 96 well plates which were coated at 1 μg/mL with the recombinant human TACI or BCMA (Peprotech), preblocked in (PBS-0.1% Tween+2.5% Milk). After washing in PBS-0.1% Tween, BAFF bound to its receptor was detected via its Fc moiety using a peroxidase-conjugated anti-human Fc (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer) and IC50 values were calculated by fitting the curves (non-linear regression) using GraphPad Prism®. The results are shown in FIG. 15 and the fitted IC50 values are tabulated below. Results showed that for the selected leads, IC50s were generally lower on BCMA than on TACI (compare FIG. 15A, TACI coating, to FIG. 15B, BCMA coating).

Fitted IC50 Values

A07B07A05B10A09
BR3 6.8 nM 6.8 nM13.8 nM 2.8 nM 9.7 nM
TAC I82.7 nM  24 nM57.8 nM14.1 nM27.2 nM
BCMA24.5 nM18.9 nM17.4 nM10.5 nM23.6 nM

+ Open protocol
+ Expand
3

Competitive Epitope Mapping of Anti-BAFF VNARs

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

In order to group the blocking clones into different categories based on the epitope that each one recognizes on the BAFF proteins, Nunc Maxisorp 96 well plates were coated at 1 μg/mL with recombinant BAFF (Sino biologicals). Clones were grown in a 96 well format and periplasmic fraction was extracted by osmotic shock as previously described. The periplasmic fraction was then pre-blocked in PBS-0.1% Tween+2.5% Milk in the presence of a competitor VNAR-Fc molecule at 2 μM final concentration. Two anti-BAFF VNAR-Fcs were used in this assay (A07, B07) as well as a negative control lysozyme-binding VNAR (5A7). The pre-blocked fraction was then exposed to the coated surface, and after washing in PBS-0.1% Tween, bound VNARs were detected using a peroxidase-conjugated anti-FLAG antibody (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer). The results are shown in FIG. 14. Results showed that the binding of each clone to BAFF was competed by both A07 and B07, revealing that all the clones of the selected panel of blockers target the same (or at least an overlapping) epitope on BAFF.

+ Open protocol
+ Expand
4

Determining Binding Affinities of VNAR Leads

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 9

The biochemical IC50 for each of the five main lead molecules was determined on both TACI and BCMA by serially diluting purified monomeric VNARs in blocking buffer (PBS-0.1% Tween+2.5% Milk) supplemented with 0.5 nM BAFF-Fc (Sino Biological). The pre-blocked proteins were then exposed to Nunc Maxisorp 96 well plates which were coated at 1 μg/mL with the recombinant human TACI or BCMA (Peprotech), preblocked in (PBS-0.1% Tween+2.5% Milk). After washing in PBS-0.1% Tween, BAFF bound to its receptor was detected via its Fc moiety using a peroxidase-conjugated anti-human Fc (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer) and IC50 values were calculated by fitting the curves (non-linear regression) using GraphPad Prism®. The results are shown in FIG. 15 and the fitted IC50 values are tabulated below. Results showed that for the selected leads, IC50s were generally lower on BCMA than on TACI (compare FIG. 15A, TACI coating, to FIG. 15B, BCMA coating).

Fitted IC50 values
A07B07A05B10A09
BR3 6.8 nM 6.8 nM13.8 nM 2.8 nM 9.7 nM
TAC I82.7 nM  24 nM57.8 nM14.1 nM27.2 nM
BCMA24.5 nM18.9 nM17.4 nM10.5 nM23.6 nM

+ Open protocol
+ Expand
5

Epitope Mapping of BAFF Binder Clones

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

In order to group the blocking clones into different categories based on the epitope that each one recognizes on the BAFF proteins, Nunc Maxisorp 96 well plates were coated at 1 μg/mL with recombinant BAFF (Sino biologicals). Clones were grown in a 96 well format and periplasmic fraction was extracted by osmotic shock as previously described. The periplasmic fraction was then pre-blocked in PBS-0.1% Tween+2.5% Milk in the presence of a competitor VNAR-Fc molecule at 2 μM final concentration. Two anti-BAFF VNAR-Fcs were used in this assay (A07, B07) as well as a negative control lysozyme-binding VNAR (5A7). The pre-blocked fraction was then exposed to the coated surface, and after washing in PBS-0.1% Tween, bound VNARs were detected using a peroxidase-conjugated anti-FLAG antibody (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer). The results are shown in FIG. 14. Results showed that the binding of each clone to BAFF was competed by both A07 and B07, revealing that all the clones of the selected panel of blockers target the same (or at least an overlapping) epitope on BAFF.

+ Open protocol
+ Expand
6

Blocking BAFF-TACI and BAFF-BCMA Interactions

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 6

The ability of BAFF/BR3 (BAFFr) blocking clones to also block the interaction between BAFF and its other two receptors (TACI and BCMA) were tested in a blocking ELISA format. Briefly, selected clones were grown in a 96 deep-well format and periplasmic fractions were extracted as previously described. Nunc Maxisorp 96 well plates were coated at 1 μg/mL with either TACI or BCMA (Peprotech) and blocked in PBS-0.1% Tween+2.5% Milk. The periplasmic fraction was also pre-blocked in PBS-0.1% Tween+2.5% Milk in the presence of 0.5 nM BAFF-Fc (Sino Biological) before being exposed to the receptor-coated surface. After washing in PBS-0.1% Tween, BAFF bound to its receptor was detected via its Fc moiety using a peroxidase-conjugated anti-human Fc (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer). The results are shown in FIG. 12. Results showed that as compared to a negative control VNAR anti-Lysosyme (a-Lys), the thirteen tested clones appeared to block the interaction between BAFF and both TACI and BCMA.

+ Open protocol
+ Expand
7

Screening Antibody Clones for BAFF Specificity

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 7

Clones blocking the interaction between BAFF and its three receptors were tested for their ability to cross-react with BAFF's closest related protein, APRIL. Clones were grown in a 96 well format, periplasmic fraction was extracted by osmotic shock as previously described and directly used in a binding ELISA. Nunc Maxisorp 96 well plates were coated at 1 μg/mL with either BAFF-Fc (Sino Biological), HSA (Sigma), or APRIL (Sigma) and periplasmic fraction, pre-blocked in PBS-0.1% Tween+2.5% Milk, was exposed to the coated surface. After washing in PBS-0.1% Tween, bound VNARs were detected using a peroxidase-conjugated anti-FLAG antibody (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer). As shown in FIG. 13, with the exception of B07 which showed a slight binding to APRIL, all the blocker clones appeared specific to BAFF.

+ Open protocol
+ Expand
8

BAFF/BR3 Receptor Blocking Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 6

The ability of BAFF/BR3 (BAFFr) blocking clones to also block the interaction between BAFF and its other two receptors (TACI and BCMA) were tested in a blocking ELISA format. Briefly, selected clones were grown in a 96 deep-well format and periplasmic fractions were extracted as previously described. Nunc Maxisorp 96 well plates were coated at 1 μg/mL with either TACI or BCMA (Peprotech) and blocked in PBS-0.1% Tween+2.5% Milk. The periplasmic fraction was also pre-blocked in PBS-0.1% Tween+2.5% Milk in the presence of 0.5 nM BAFF-Fc (Sino Biological) before being exposed to the receptor-coated surface. After washing in PBS-0.1% Tween, BAFF bound to its receptor was detected via its Fc moiety using a peroxidase-conjugated anti-human Fc (Sigma). Absorbance at 450 nm was recorded using an Envision multiwell reader (Perkin Elmer). The results are shown in FIG. 12. Results showed that as compared to a negative control VNAR anti-Lysosyme (a-Lys), the thirteen tested clones appeared to block the interaction between BAFF and both TACI and BCMA.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!