The largest database of trusted experimental protocols

Hrp conjugated anti human fc

Manufactured by Jackson ImmunoResearch
Sourced in United States

HRP-conjugated anti-human Fc is a laboratory reagent designed for use in immunoassays. It consists of horseradish peroxidase (HRP) covalently linked to antibodies that specifically recognize the Fc region of human immunoglobulins. This reagent can be used to detect and quantify human antibodies in various experimental settings.

Automatically generated - may contain errors

13 protocols using hrp conjugated anti human fc

1

CTLA4-Binding Nanobody Competition Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 49

In order to determine B7-2 competition efficiency of CTLA4 binding Nanobodies, the purified clones were tested in an ELISA competition assay setup.

In short, 5 μg/ml B7-muFc (Ancell, Bayport, Minn., Cat #509-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 22 nM CTLA4-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody (1A1) was used as a negative controle, since this Nanobody does not bind to CTLA4. As a positive controle for competition, the commercial CTLA-4 binding antibody (BNI-3; competing for B7-1 and B7-2) was used. After incubation and a wash step the CTLA4-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. OD values obtained, depicted in FIGS. 28 and 29, show that 4 Nanobodies selected show competition with B7-2 for binding to CTLA4 in a dose-dependent manner.

+ Open protocol
+ Expand
2

CTLA4 Binding Nanobody Competition Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 48

In order to determine B7-1 competition efficiency of CTLA4 binding Nanobodies, the purified clones were tested in an ELISA competition assay setup.

In short, 2 μg/ml B7-1-muFc (Ancell, Bayport, Minn., US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 0.33 nM CTLA4-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody (1A1) was used as a negative controle, since this Nanobody does not bind to CTLA4. As a positive controle for competition with B7-1, the commercial CTLA-4 binding antibody (BNI-3; competing for B7-1 and B7-2) was used. After incubation and a wash step, the CTLA4-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. OD values obtained, depicted in FIGS. 26 and 27, show that 2 Nanobodies selected show competition with B7-1 for binding to CTLA4 in a dose-dependent manner.

+ Open protocol
+ Expand
3

Nanobody Competition Assay for CD28 Binding

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 40

In order to determine B7-1 competition efficiency of CD28 binding Nanobodies, the purified Nanobodies that showed binding in the previous binding assay were tested in an ELISA competition assay setup.

In short, 1 μg/ml B7-1-muFc (Ancell, Bayport, Minn., US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 2 μg/ml CD28-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody against FcgR1 (49E4) was used as a negative control, since this Nanobody does not bind to CD28. After incubation and a wash step the CD28-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. The results are shown in FIG. 22. All Nanobodies selected showed competition with B7-1 for binding to CD28 in a dose-dependent manner.

+ Open protocol
+ Expand
4

Nanobody CTLA4 Binding Competition Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 48

In order to determine B7-1 competition efficiency of CTLA4 binding Nanobodies, the purified clones were tested in an ELISA competition assay setup.

In short, 2 μg/ml B7-1-muFc (Ancell, Bayport, Minn., US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 0.33 nM CTLA4-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody (1A1) was used as a negative control, since this Nanobody does not bind to CTLA4. As a positive control for competition with B7-1, the commercial CTLA-4 binding antibody (BNI-3; competing for B7-1 and B7-2) was used. After incubation and a wash step, the CTLA4-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. OD values obtained, depicted in FIGS. 26 and 27, show that 2 Nanobodies selected show competition with B7-1 for binding to CTLA4 in a dose-dependent manner.

+ Open protocol
+ Expand
5

CD28 Binding Nanobody Competition Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 40

In order to determine B7-1 competition efficiency of CD28 binding Nanobodies, the purified Nanobodies that showed binding in the previous binding assay were tested in an ELISA competition assay setup.

In short, 1 μg/ml B7-1-muFc (Ancell, Bayport, Minn., US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 2 μg/ml CD28-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody against FcgR1 (49E4) was used as a negative controle, since this Nanobody does not bind to CD28. After incubation and a wash step the CD28-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. The results are shown in FIG. 22. All Nanobodies selected showed competition with B7-1 for binding to CD28 in a dose-dependent manner.

+ Open protocol
+ Expand
6

CTLA4 Nanobody Binding Competition Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 48

In order to determine B7-1 competition efficiency of CTLA4 binding Nanobodies, the purified clones were tested in an ELISA competition assay setup.

In short, 2 μg/ml B7-1-muFc (Ancell, Bayport, Minn., US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 0.33 nM CTLA4-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody (1A1) was used as a negative controle, since this Nanobody does not bind to CTLA4. As a positive controle for competition with B7-1, the commercial CTLA-4 binding antibody (BNI-3; competing for B7-1 and B7-2) was used. After incubation and a wash step, the CTLA4-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. OD values obtained, depicted in FIGS. 26 and 27, show that 2 Nanobodies selected show competition with B7-1 for binding to CTLA4 in a dose-dependent manner.

+ Open protocol
+ Expand
7

Nanobody-mediated CD28 Binding Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 40

In order to determine B7-1 competition efficiency of CD28 binding Nanobodies, the purified Nanobodies that showed binding in the previous binding assay were tested in an ELISA competition assay setup.

In short, 1 μg/ml B7-1-muFc (Ancell, Bayport, Minn., US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 2 μg/ml CD28-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody against FcgR1 (49E4) was used as a negative controle, since this Nanobody does not bind to CD28. After incubation and a wash step the CD28-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. The results are shown in FIG. 22. All Nanobodies selected showed competition with B7-1 for binding to CD28 in a dose-dependent manner.

+ Open protocol
+ Expand
8

Nanobody Competition Assay for CTLA4 Binding

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 49

In order to determine B7-2 competition efficiency of CTLA4 binding Nanobodies, the purified clones were tested in an ELISA competition assay setup.

In short, 5 μg/ml B7-muFc (Ancell, Bayport, Minn., Cat #509-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 22 nM CTLA4-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody (1A1) was used as a negative controle, since this Nanobody does not bind to CTLA4. As a positive controle for competition, the commercial CTLA-4 binding antibody (BNI-3; competing for B7-1 and B7-2) was used. After incubation and a wash step the CTLA4-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, Pa., US, Cat #109-116-170) 1:1500 in 2% MPBST. OD values obtained, depicted in FIGS. 28 and 29, show that 4 Nanobodies selected show competition with B7-2 for binding to CTLA4 in a dose-dependent manner.

+ Open protocol
+ Expand
9

ELISA Assay for Mycolactone Detection

Check if the same lab product or an alternative is used in the 5 most similar protocols
ELISA was performed by coating 96-well ELISA plates (Nunc) with 10 ug/mL neutravidin diluted in 1× phosphate-buffered saline (PBS), and incubating the plate overnight at 4 °C. Wells were blocked with 2% MPBS (1× PBS, 2% skim milk (w/v)) and subsequently incubated with 300 nM biotinylated mycolactone or ubiquitin as a negative control. After a rinse step, yeast undiluted supernatants were added to the wells. After one-hour incubation at room temperature, a further rinse step was performed, followed by HRP-conjugated anti-human Fc (Jackson ImmunoResearch, West Grove, PA, USA) diluted 1:5000 in PBS and incubated 1 h at room temperature. After a final rinse step, the immunocomplexes were revealed by adding TMB (Sigma-Aldrich, St. Louis, MO, USA) and reading the plate at 450 nm. ELISA with non-biotinylated mycolactone and ubiquitin and LPS as negative control was performed by directly coating 96-well ELISA plates (Nunc) with 300 nM of molecules overnight at 4 °C. Wells were blocked with 2% MPBS (1× PBS, 2% skim milk (w/v)) and, after a washing step, yeast undiluted supernatants were added to the wells and the ELISA completed following the procedure described above.
+ Open protocol
+ Expand
10

CTLA4 Nanobody Binding Efficiency

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 48

In order to determine B7-1 competition efficiency of CTLA4 binding Nanobodies, the purified clones were tested in an ELISA competition assay setup.

In short, 2 μg/ml B7-1-muFc (Ancell, Bayport, MN, US, Cat #510-820) was immobilized on maxisorp microtiter plates (Nunc, Wiesbaden, Germany) and free binding sites were blocked using 4% Marvel in PBS. Next, 0.33 nM CTLA4-hFc was mixed with a dilution series of purified Nanobody. An irrelevant Nanobody (1A1) was used as a negative controle, since this Nanobody does not bind to CTLA4. As a positive controle for competition with B7-1, the commercial CTLA-4 binding antibody (BNI-3; competing for B7-1 and B7-2) was used. After incubation and a wash step, the CTLA4-hFc was detected with a HRP-conjugated anti-human Fc (Jackson Immunoresearch Laboratories, West Grove, PA, US, Cat #109-116-170) 1:1500 in 2% MPBST. OD values obtained, depicted in FIGS. 26 and 27, show that 2 Nanobodies selected show competition with B7-1 for binding to CTLA4 in a dose-dependent manner.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!