The largest database of trusted experimental protocols

Csu x1 m1n

Manufactured by Yokogawa

The CSU-X1-M1N is a compact spectral radiometer that measures the spectral irradiance of light sources. It features a wide wavelength range and high spectral resolution. The device is designed for laboratory and field applications that require accurate spectral measurements.

Automatically generated - may contain errors

3 protocols using csu x1 m1n

1

Live Chromatin Imaging with SiR-Hoechst

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were placed in a 37 °C humid incubator by controlling the temperature and CO2 flow using H201-couple with temperature and CO2 units. Live chromatin imaging was performed using a DMI8 inverted automated microscope (Leica Microsystems) featuring a confocal spinning disk unit (CSU-X1-M1N, Yokogawa). An integrated laser engine (ILE 400, Andor) was used for excitation with a selected wavelength of 647 nm and 140 mW as excitation power. A 100× oil immersion objective (Leica HCX-PL-APO) with a 1.4 NA was chosen for a high-resolution imaging. Fluorescence emission of the SiR-Hoechst was filtered by a single-band bandpass filter (FF01-650/13-25, Semrock, Inc.). Image series of 150 frames (5 fps), with exposure time of 150 ms per frame, were acquired using Metamorph software (Molecular Devices) and detected using sCMOS cameras (ORCA-Flash4.0 V2) and 1 × 1 binning, with sample pixel size of 65 nm. All series were recorded at 37 °C.
+ Open protocol
+ Expand
2

Visualizing Cell Cycle Dynamics in Neural Tubes

Check if the same lab product or an alternative is used in the 5 most similar protocols
1.5-days-old embryos were electroporated with a pNLS-EGFP-L2-PCNA (Leonhardt et al., 2000 (link)) vector, to distinguish the G2/M/G1 phases of the cell cycle, at 0.5 µg/µl. 6 hr later, embryos were dissected, fluorescent neural tubes were transferred to a tissue chopper (Mc Ilwain) and 100 µm thick transverse sections were sliced. Sections were collected in 199 culture medium (GIBCO) and were sorted out under a fluorescence microscope to control tissue integrity and the presence of isolated fluorescent cells along the dorso-ventral axis. Each slice was imbedded into 10 µl of rat type I collagen (Roche; diluted at 80% with 1X MEM (GIBCO), 1X GlutaMax (GIBCO) and neutralizing bicarbonate (GIBCO)). Four neural tube-containing collagen drops (5 µl) were distributed on a 35 mm glass-bottom culture dish (IBIDI). Collagen polymerization was performed at 38°C for 30 min and 1.5 ml of complete culture medium (199 medium, 5% FCS, 1X GlutaMax, Gentamicin 40 µg/ml) was gently added. For time-lapse, images were acquired on an inverted microscope (Leica inverted DMI8) equipped with a heating enclosure (set up at 39°C), a spinning disk confocal head (CSU-X1-M1N, Yokogawa) a SCMOS camera and a 63X oil immersion objective (NA 1,4–0,7). We recorded 40 µm thick z stacks (2 µm z-steps) at 5 min intervals. IMARIS and ImageJ software were used for image processing and data analysis.
+ Open protocol
+ Expand
3

Automated Confocal Imaging of DNA Dynamics

Check if the same lab product or an alternative is used in the 5 most similar protocols
DNA images were acquired using a DMI8 inverted automated microscope (Leica Microsystems) featuring a confocal spinning disk unit (CSU-X1-M1N, Yokogawa). Integrated laser engine (ILE 400, Andor) with a selected wavelength of 647 nm (140 mW) was used for excitation. Samples were imaged with an oil immersion objective (Leica HCX-PL-APO 100x/1.4 NA). Fluorescence emission of the SiR–Hoechst was filtered by a single-band bandpass filter (FF01-650/13-25, Semrock, Inc.). Image series of 150 frames (5 fps) were acquired using Metamorph software (Molecular Devices), and detected using sCMOS cameras (ORCA-Flash4.0 V2) and (1 × 1 binning), with sample pixel size of 65 nm. All series were recorded at 37°C and in a humid chamber by controlling the temperature and CO2 control flow using H201—couple with temperature and CO2 units.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!