Embryonic stem cells and EpiSCs were plated in a 12‐well plate and transiently transfected with luciferase reporter plasmid with CMV‐lacZ to normalize for transfection efficiency (based on CPRG (Merck) colorimetric assay), together with plasmids encoding for the indicated proteins. We transfected 1.5 μg of DNA in each sample by adding the pKS Bluescript plasmid when needed. Forty‐eight hours after transfection, the cells were harvested in Luc lysis buffer (25 mM Tris pH 7.8, 2.5 mM EDTA, 10% glycerol, 1% NP‐40). Luciferase activity was determined in a Tecan plate luminometer with freshly reconstituted assay reagent (0.5 mM D‐luciferin, 20 mM tricine, 1 mM (MgCO3)4·Mg(OH)2, 2.7 mM MgSO4, 0.1 mM EDTA, 33 mM DTT, 0.27 mM CoA, 0.53 mM ATP).
Plate luminometer
The Plate Luminometer is a versatile laboratory instrument used for the detection and quantification of luminescent signals in microplate-based assays. It provides accurate and sensitive measurements of light output, enabling researchers to analyze a wide range of bioluminescent and chemiluminescent samples.
Lab products found in correlation
15 protocols using plate luminometer
Luciferase Reporter Assay for Embryonic Stem Cells
Embryonic stem cells and EpiSCs were plated in a 12‐well plate and transiently transfected with luciferase reporter plasmid with CMV‐lacZ to normalize for transfection efficiency (based on CPRG (Merck) colorimetric assay), together with plasmids encoding for the indicated proteins. We transfected 1.5 μg of DNA in each sample by adding the pKS Bluescript plasmid when needed. Forty‐eight hours after transfection, the cells were harvested in Luc lysis buffer (25 mM Tris pH 7.8, 2.5 mM EDTA, 10% glycerol, 1% NP‐40). Luciferase activity was determined in a Tecan plate luminometer with freshly reconstituted assay reagent (0.5 mM D‐luciferin, 20 mM tricine, 1 mM (MgCO3)4·Mg(OH)2, 2.7 mM MgSO4, 0.1 mM EDTA, 33 mM DTT, 0.27 mM CoA, 0.53 mM ATP).
Luciferase Assay for β-Catenin/TCF Transcription
Cells were plated in 24-well plates at a density of 5×104 cells/well. After 24 h luciferase reporter plasmid was transiently transfected using TransIT®-LT1 Transfection Reagent (Mirus). 48 h after transfection, cells were left untreated or treated with the compounds for 8 h and then harvested in Luc lysis buffer (25 mM Tris pH 7.8, 2.5 mM EDTA, 10% glycerol, 1% NP-40, 2 mM DTT). Luciferase activity was determined in a Tecan plate luminometer with freshly reconstituted assay reagent (0.5 mM D-Luciferin, 20 mM tricine, 1 mM (MgCO3)-4 mM Mg(OH)2, 2.7 mM MgSO4, 0.1 mM EDTA, 33 mM DTT, 0.27 mM CoA, 0.53 mM ATP).
Sensitive NADH Detection Assay
Example 37
Two fold serial dilutions of NADH (Sigma) were made in PBS starting from 10 μM. 25 ul of each dilution was transferred into wells of a 384-well plates. Detection reagent was made by adding 10 U/ml rat diaphorase (Sigma) and 40 μM proluciferin substrate PBI 4312 into Luciferin Detection Reagent (LDR; Promega Cat. No V8920). 25 μl of detection reagent was added to the NADH samples. The reactions were incubated for 30 minutes at room temperature, and luminescence was measured using a Tecan plate luminometer.
The results show that the diaphorase enzyme remains active in the detection reagent, and the NADH-dependent reduction of the proluciferin by diaphorase into luciferin can occur simultaneously with the luciferin-dependent light-generating luciferase reaction (
Dinucleotide Detection and Quantification
Example 40
Two fold serial dilutions of NADH, NADPH, NAD, and NADP (Sigma) were made in PBS starting from 0.313 uM. 10 ul of each dilution was transferred into wells of a 384-well plate. Detection reagents were made by adding 10 U/ml of rat diaphorase (Sigma), 40 uM proluciferin substrate PBI 4312 and NADP or NAD dependent enzyme amplification systems consisting of Glucose-6Phosphate Dehydrogenase (5 U/ml) and glucose-6P (0.5 mM) for NADP or Lactate Dehydrogenase (5 U/ml) and Lactate (40 mM) for NAD into Luciferin Detection Reagent (LDR; Promega Cat. No V8920). 10 ul of appropriate detection reagent was added to the dinucleotide samples. The reactions were incubated for 30 minutes at room temperature, and luminescence measured on a Tecan plate luminometer.
The results show that when the detection method described herein is combined with the dinucleotide specific amplification enzyme system, light is generated only in the samples containing appropriate dinucleotide (
NADP Detection using Pro-luciferin Substrate
Example 39
Two fold serial dilutions of NADP (Sigma) were made in PBS starting from 0.5 μM. 25 μl of each dilution was transferred into wells of a 384-well plates. Detection reagent was made by adding 10 U/ml rat diaphorase (Sigma), 40 μM proluciferin substrate PBI 4312 and NADP dependent enzyme amplification system consisting of 0.5 U/ml glucose 6 phosphate Dehydrogenase (Sigma) and 500 μM glucose 6 phosphate (Sigma) into Luciferin Detection Reagent (LDR; Promega Cat. No V8920). 25μ of detection reagent was added to the NADP samples. The reaction was incubated for 30 minutes at room temperature, and luminescence measured using a Tecan plate luminometer.
The following example demonstrates the use of the pro-luciferin substrate PBI 4312 to detect and measure NADP Luminescence generated is indicative of the presence of NADP with the light output directly proportional to the amount of NADP present in the sample. The results show that the diaphorase and glucose 6 phosphate Dehydrogenase enzymes remain active in detection reagent, and all three enzymatic reactions can occur simultaneously (
Measuring NAD(P)/NAD(P)H Levels in HepG2 Cells
Example 45
HepG2 cells were plated into wells of a 384-well plate at 5,000 cells/well in 25 ul of RPMI media containing 22 mM glucose or 10 mM galactose as an energy source. The cells were treated with 1 uM mitochondrial toxin antimycin or rotenone. At 4 and 24 hours after drug treatment, 25 μl of appropriate detection reagent was added to the cells. The NADH/NADPH detection reagent contained 10 U/ml rat diaphorase, 32 uM proluciferin substrate PBI 4312, 0.5 U/ml Glucose-6-Phosphate Dehydrogenase and 0.4 mM glucose-6-phosphate into Luciferin Detection Reagent. The NAD/NADH detection reagent contained 10 U/ml of rat diaphorase, 32 uM proluciferin substrate PBI 4312, 10 U/ml Lactate Dehydrogenase and 40 mM Lactate in Luciferin Detection Reagent. The reactions were incubated for 30 minutes at room temperature, and luminescence measured using a Tecan plate luminometer. The data are shown as % of dinucleotides remaining in the cells after treatment compared to untreated cells.
The results show that drug induced changes in cellular NAD(P)/NAD(P)H levels can be measured using the method described herein (
Cell Quantification via Proluciferin Conversion
Example 41
Two fold serial dilutions of PC3 cells were made in F12K media with 10% FBS. 25 ul of each dilution was transferred into wells of a 384-well plate. Detection reagent was made by adding 10 U/ml rat diaphorase (Sigma) and 40 μM proluciferin substrate PBI 4312 into Luciferin Detection Reagent (LDR; Promega Cat. No V8920). 25 μl of detection reagent was added directly to the cells. The reactions were incubated for 30 minutes at room temperature, and luminescence measured using a Tecan plate luminometer.
NAD Detection via Luminescent Assay
Example 38
Two fold serial dilutions of NAD (Sigma) were made in PBS starting from 0.25 μM. 25 μl of each dilution was transferred into wells of a 384-well plates. Detection reagent was made by adding 10 U/ml rat diaphorase (Sigma), 40 μM proluciferin substrate PBI 4312 and NAD dependent enzyme amplification system consisting of 5 U/ml lactate Dehydrogenase (Calbiochem) and 40 mM lactate (Sigma) into Luciferin Detection Reagent (LDR; Promega Cat. No V8920). 25 μl of the detection reagent was added to the NAD samples. The reactions were incubated for 30 minutes at room temperature, and luminescence measured using a Tecan plate luminometer.
The following example demonstrates the use of the pro-luciferin substrate PBI-4312 to detect and measure NAD Luminescence generated is indicative of the presence of NAD with the light output directly proportional to the amount of NAD present in the sample. The results show that the diaphorase and lactate dehydrogenase enzymes remain active in the detection reagent, and all three enzymatic reactions can occur simultaneously (
YAP/TAZ Transcriptional Activity Assay
Transcriptional Activity Regulation Assay
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!