The largest database of trusted experimental protocols

Klenow fragment dna polymerase

Manufactured by Takara Bio
Sourced in Japan

Klenow Fragment DNA Polymerase is a DNA-dependent DNA polymerase enzyme derived from the Klenow fragment of E. coli DNA polymerase I. It catalyzes the polymerization of nucleotides into DNA strands in the 5' to 3' direction.

Automatically generated - may contain errors

2 protocols using klenow fragment dna polymerase

1

Enrichment of D4Z4 Repeat DNA

Check if the same lab product or an alternative is used in the 5 most similar protocols
RP11-242C23 was digested using EcoRI and treated with Klenow Fragment DNA Polymerase (Takara, Shiga, Japan) at 37 °C for 20 min. DNA was subjected to electrophoresis on a 0.5% agarose gel. Bands larger than the 10-kb marker (GeneRuler 1 kb DNA Ladder; Thermo Fisher Scientific, Waltham, MA, USA) were excised using a razor under ultraviolet light. The DNA fragments larger than 1 kb were subjected to phenol-chloroform DNA preparation. Agarose gels were soaked in phenol and incubated for 30 min at −80 °C. Then, the aqueous phase was collected and phenol-chloroform DNA preparation was performed. The EcoRI-digested whole D4Z4 repeat was enriched in the DNA sample.
+ Open protocol
+ Expand
2

Plasmid Sequencing via Nanopore Technology

Check if the same lab product or an alternative is used in the 5 most similar protocols
These repeat containing plasmids were cut (linearized) with restriction enzymes NheI, EcoRI-HF, BamHI-HF, or DraIII (NEB, MA, USA) (Additional file 1: Table S7) and then treated with Klenow Fragment DNA Polymerase (Takara, Shiga, Japan) at 37 °C for 30 min. The whole DNA fragments were purified using AmPureXT beads (Agilent Technologies, CA, USA), then subjected to nanopore sequencing. Library preparation was performed using a 1D native barcoding genomic DNA kit (EXP-NBD103 and SQK-LSK108) and then subjected to MinION (Oxford Nanopore Technologies) sequencing using one FLA-MIN106 (R9.4.1) flow cell according to the manufacturer’s protocol. Basecalling and fastq conversion were performed with MinKNOW ver1.11.5. De-barcoding was done using EPIME software (Oxford Nanopore Technologies).
Obtained fastq files were transformed to fasta files using seqkit fq2fa option (http://bioinf.shenwei.me/seqkit). fasta files were aligned to plasmid references like this:

lastdb -P8 -uNEAR -R01 plasmid-ref plasmid.fasta

last-train -P8 plasmid-ref reads.fasta > train.out

lastal -P8 -p train.out plasmid-ref reads.fasta | last-split > alns.maf

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!