The largest database of trusted experimental protocols

Clinical grade cd271 microbead kit

Manufactured by Miltenyi Biotec
Sourced in Germany

The Clinical grade CD271 microbead kit is a laboratory equipment product from Miltenyi Biotec. It is used for the isolation and enrichment of CD271-positive cells from various sample types.

Automatically generated - may contain errors

2 protocols using clinical grade cd271 microbead kit

1

Isolation and Expansion of CD271+ MSCs

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bone marrow-derived mononuclear cells (BM-MNC) were obtained using density gradient centrifugation over Lymphoprep (Axis-Sheld, Oslo, Norway). CD271+ BM-MNCs were isolated by immuno-magnetic positive selection using QuadroMACS system and clinical grade CD271 microbead kit (Miltenyi Biotec GmbH, Germany) following manufacturer’s instructions. The unselected and CD271-enriched BM-MNCs were then seeded into T25 culture flasks and 6 well culture plates respectively and cultured in good manufacturing practice (GMP) compliant MSC expansion medium containing 10% FCS (StemMACS, Miltenyi Biotec) at 37 °C in a 5% CO2 incubator. After 3 days, the non-adherent cells were discarded with the replacement of culture medium. The medium was changed twice weekly and cells were passaged to a new flask when the culture reached 80% confluence using standard Trypsin/EDTA (Sigma-Aldrich) treatment. The MSCs derived from BM-MNCs with or without CD271 enrichment were denoted as CD271-MSC and PA-MSC respectively. Each paired PA-MSC and CD271-MSC samples were generated from the same bone marrow donation, seeded at the same density (4 × 103/cm2) and cultured/passaged under identical conditions. At each passage cell population doubling time was recorded. MSCs at passage 3 were used in all experiments throughout this work.
+ Open protocol
+ Expand
2

Isolation and Expansion of MSCs from BM-MNC

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bone marrow-derived mononuclear cells (BM-MNC) were obtained using density gradient centrifugation over Lymphoprep (Axis-Sheld, Oslo, Norway). CD271+ BM-MNCs were isolated by immuno-magnetic positive selection using QuadroMACS system and clinical grade CD271 microbead kit (Miltenyi Biotec GmbH, Germany) following manufacturer’s instructions. The unselected and CD271-enriched BM-MNCs were then seeded into T25 culture flasks and 6 well culture plates respectively and cultured in good manufacturing practice (GMP) compliant MSC expansion medium containing 10% FCS (StemMACS, Miltenyi Biotec) at 37 °C in a 5% CO2 incubator. After 3 days, the non-adherent cells were discarded with the replacement of culture medium. The medium was changed twice weekly and cells were passaged to a new flask when the culture reached 80% confluence using standard Trypsin/EDTA (Sigma-Aldrich) treatment. The MSCs derived from BM-MNCs with or without CD271 enrichment were denoted as CD271- MSC and PA-MSC respectively. Each paired PA-MSC and CD271-MSC samples were generated from the same bone marrow donation, seeded at the same density (4 × 103/cm2) and cultured/passaged under identical conditions. At each passage cell population doubling time was recorded. MSCs at passage 3 were used in all experiments throughout this work.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!