The largest database of trusted experimental protocols

Confocal software 2

Manufactured by Leica

Leica Confocal Software 2.5 is a software package designed to operate Leica confocal microscopes. It provides the core functionality required to control the microscope hardware, acquire and process confocal images.

Automatically generated - may contain errors

5 protocols using confocal software 2

1

Fluorescence Microscopy of NTHi Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
NTHi strains were grown on chocolate agar for 16 h, in the absence or presence of thymidine, and a colony was aseptically spread with an inoculation loop over a drop of distilled water on a microscopy slide. Samples were air-dried and stained for 15 min in the darkness with the cell-permeable fluorescent nucleic acid stain SYTO 9 (Life Technologies), following the manufacturer's instructions. Samples were washed twice with distilled water and fluorescence was observed by confocal laser microscopy. Images were acquired using a Leica TCS-SL filter-free spectral confocal laser-scanning microscope (Leica Microsystems) equipped with a 488 nm argon laser, 543 nm and 633 nm He/Ne lasers (Centres Científics i Tecnològics-Campus de Bellvitge, Universitat de Barcelona, Spain) using a 63× magnification oil immersion objective (1.4 numerical aperture), and an image resolution of 1024 × 1024 pixels. Images were acquired randomly and analyzed using the Leica Confocal Software 2.5 (Leica Microsystems).
+ Open protocol
+ Expand
2

Confocal microscopy of bacterial biofilms

Check if the same lab product or an alternative is used in the 5 most similar protocols
Overnight bacterial cultures were used to inoculate an eight-well chambered cover glass for confocal image analysis (Ibidi GmbH) to a final OD620 of 0.01 in 2 ml of sBHI. The plates were incubated at 37°C for 24 h without shaking. After incubation, the wells were washed with distilled water and stained for 15 min in the dark with the cell-permeating fluorescent dye SYTO 17 Red Fluorescent Nucleic Acid Stain in accordance with the manufacturer’s instructions (Molecular Probes).
Samples were washed three times to remove nonspecific staining, and fluorescence was observed by confocal laser microscopy. Images of the double-labeled sections were acquired with a Leica TCS-SL filter-free spectral confocal laser scanning microscope (Leica Microsystems, Inc.) with a 488-nm argon laser, 543- and 633-nm He/Ne lasers (Centres Científics i Tecnològics, Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain), a 63× oil immersion objective (1.4 numerical aperture), and an image resolution of 1,024 by 1,024 pixels. The images were acquired randomly from the cover glass surface and analyzed with the Leica Confocal Software 2.5 (Leica Microsystems, Inc.).
+ Open protocol
+ Expand
3

Microscopic Imaging of GUS, GFP, and Esculin in Plants

Check if the same lab product or an alternative is used in the 5 most similar protocols
Pictures of GUS plants were taken with a Leica MZFLIII stereomicroscope (Leica Microsystems) or with a Zeiss Axioskop (Carl Zeiss Jena GmbH). Pollen tubes for length measurements were analyzed by light microscopy (Zeiss Axioskop; Carl Zeiss Jena). Pollen stained with iodine potassium iodide solution were analyzed in bright field at 1000x magnification with a Zeiss Axioskop (Carl Zeiss Jena GmbH). Images of GFP-reporter plants and GFP expressing pollen tubes were taken on a Leica 765 TCS SPII confocal laser scanning microscope (Leica Microsystems) and processed with Leica Confocal Software 2.5. A 488-nm argon laser was used for excitation of GFP and chlorophyll autofluorescence. The 415-nm diode was used for the excitation of esculin fluorescence. Detection windows ranged from 497 to 526 nm for GFP, from 682 to 730 nm for chlorophyll autofluorescence and from 424 to 469 nm for esculin. Images of GFP and esculin fluorescence for the pollen tube esculin uptake assay were taken in a sequential mode. Image processing was done using analySIS Doku 3.2 software (Soft Imaging System, Münster) and GIMP2.10 (https://www.gimp.org/).
+ Open protocol
+ Expand
4

Microscopic Analysis of GUS Plants

Check if the same lab product or an alternative is used in the 5 most similar protocols
GUS plants were analysed under a stereomicroscope (Leica MZFLIII; Leica Microsystems) or a microscope (Zeiss Axioskop; Carl Zeiss Jena GmbH). Images were processed using the analySIS Doku 3.2 software (Soft Imaging System, Münster, Germany).
Images of protoplasts and GFP-reporter plants were taken on a confocal laser scanning microscope (Leica TCS SPII; Leica Microsystems) using a 488nm argon laser for excitation and processed with Leica Confocal Software 2.5. Detection windows ranged from 497 to 526nm for GFP and from 682 to 730nm for chlorophyll autofluorescence.
+ Open protocol
+ Expand
5

Confocal Microscopy of Fluorescent Biological Samples

Check if the same lab product or an alternative is used in the 5 most similar protocols
Images of GFP-reporter plants, GFP expressing yeast strains and protoplasts were taken on a Leica 765 TCS SPII confocal laser scanning microscope (Leica Microsystems) and processed with Leica Confocal Software 2.5. A 488-nm argon laser was used for excitation of GFP, chlorophyll autofluorescence and propidium iodide. The 415-nm diode was used for the excitation of esculin fluorescence. Detection windows ranged from 497 to 526 nm for GFP, from 682 to 730 nm for chlorophyll autofluorescence, from 589 to 684 nm for propidium iodide, and from 424 to 469 nm for esculin. Images of GFP and esculin fluorescence for the esculin uptake assay were taken in a sequential mode. Fluorescence intensities of GFP and esculin were quantified in three regions of a defined size in each protoplast image using ImageJ 1.50b (Schneider C.A. et al., 2012 (link)). Images of GUS plants were taken with a Zeiss Axioskop (Carl Zeiss Jena GmbH) or with a Leica MZFLIII stereomicroscope (Leica Microsystems). For cross-sections stained roots were embedded into Technovit as described (Beeckman and Viane, 2000 (link); Ühlken et al., 2014 (link)) and sections were cut using a Leica RM2135 rotary microtome. Image processing was done using the analySIS Doku 3.2 software (Soft Imaging System, Münster), ImageJ 1.50b (Schneider C.A. et al., 2012 (link)) and GIMP2.82.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!