The largest database of trusted experimental protocols

4d nucleofecter

Manufactured by Lonza

The 4D-Nucleofector is a laboratory instrument designed for the efficient and reliable transfection of cells. It utilizes a proprietary electroporation technology to facilitate the delivery of various molecules, including nucleic acids, into a wide range of cell types.

Automatically generated - may contain errors

3 protocols using 4d nucleofecter

1

CRISPR-Mediated Gene Editing in Primary T Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Primary T cells were stimulated with Dynabeads Human T Activator anti-CD3/28 (Thermo Scientific). Four days after the stimulation, electroporation was performed using an Amaxa P3 Primary Cell Kit and 4D-Nucleofecter (Lonza). Ten micrograms of recombinant S. pyogenes Cas9 (Thermo Fisher Scientific) and 1.25 μg of chemically synthesized sgRNAs for DGKa and DGKz were incubated for 20 min before electroporation to generate Cas9-gRNA RNP complexes. A total of 5 × 105 cells were resuspended, and P3 buffer was added to the pre-incubated Cas9-gRNA RNP complexes. Cells were nucleofected using the program EO-115. One week after the electroporation, the cells were collected and the genomic DNA was isolated. The frequency of indels was calculated by Tracking of Indels by Decomposition (TIDE) analysis.
+ Open protocol
+ Expand
2

CRISPR/Cas9 Genome Editing of T Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
CRISPR/Cas9-mediated genome editing of T cells was carried out as follows. Human peripheral blood pan-T cells were purchased from STEMCELL Technologies. Upon thawing, the T cells were allowed to rest overnight in RPMI supplemented with FBS, hrIL-2 (Peprotech, 50 U/mL), and hrIL-7 (Peprotech, 5 ng/mL) prior to activation. Activation was induced by the addition of Dynabeads Human T Activator anti-CD3/28 (ThermoFisher SCIENTIFIC) at a bead-to-cell ratio of 3:1 in RPMI supplemented with 10% FBS. 3 days later, the activating beads were removed and electroporation was carried out using an Amaxa P3 Primary Cell kit and 4D-Nucleofecter (Lonza). Eight micrograms of recombinant S. pyogenes Cas9 (Toolgen) and 2 μg of 5′-OH sgRNA were incubated for 20 min prior to electroporation to generate Cas9-gRNA RNP complexes. A total of 5 × 105 stimulated T cells re-suspended in P3 buffer were added to the pre-incubated Cas9-gRNA RNP complexes. Cells were nucleofected using program EO-115. Following electroporation, cells were seeded at 5 × 105 cells per mL in RPMI supplemented with 10% FBS, hIL-2 (Peprotech, 50 U/mL), and hIL-7 (Peprotech, 5 ng/mL). Electroporation-only controls were nucleofected without RNP complexes using the same conditions. Cells were counted using Countess II Fl (Life technologies). Images of the cells were taken using an EVOS Fl Cell Imaging System (Thermo Fisher Scientific).
+ Open protocol
+ Expand
3

CRISPR-Cas9 Editing of CAR T Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cas9 RNP mediated editing of CAR T cells was carried out on day 3 of culture (one day after retroviral transduction) according to previously published methods55 (link). Two IFNAR1 targeting crRNAs (Mm.Cas9.IFNAR1.1.AA (TCAGTTACACCATACGAATC) and Mm.Cas9.IFNAR1.1.AB (GCTTCTAAACGTACTTCTGG)) and Alt-R CRISPR-Cas9 Negative Control crRNAs #1 and #2 were ordered from Integrated DNA Technologies (IDT). Alt-R crRNA and Alt-R tracrRNA duplexes were prepared at equimolar concentrations and annealed at 95 °C for 5 min. 150 pmol of each duplex was precomplexed with 120 pmol TrueCut Cas9 Protein v2 (Thermo Fisher Scientific) for 10–20 min to modify 1 × 107 cells. T cells were mixed with RNP complex and Cas9 Electroporation Enhancer (4 uM, IDT). Nucleofection was performed using the Amaxa P4 Primary Cell kit and 4D-Nucleofecter (Lonza) using the program CM137.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!