The largest database of trusted experimental protocols

Sp diic18

Manufactured by Thermo Fisher Scientific

The SP-DiIC18 is a laboratory equipment product designed for imaging and analysis applications. It is a fluorescent dye used for labeling and visualizing cell membranes and lipid-rich structures. The SP-DiIC18 provides a consistent and reliable tool for researchers in various fields of study.

Automatically generated - may contain errors

2 protocols using sp diic18

1

Fluorescent Labeling of Cultured Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

In a subset of studies, RAECs were labeled with DiI or DiO on the day of recellularization. Briefly, media was removed from a confluent plate of RAECs and replaced with DPBS containing 5 μM SP-DiIC18 or SP-DiOC18 (Invitrogen). After 5 minutes of incubation at 37° C., plates were transferred to a refrigerator and incubated for 15 minutes at 4° C. Plates were then washed once with PBS and allowed to recover for 2 hours at 37° C. in culture media before isolation and construct seeding. At the end of the experiment, constructs were removed from the bioreactor and imaged on a Stereo Discovery V20 Macro Stereo (Carl Zeiss Inc.), dissected, placed in Slowfade (Invitrogen) and imaged on a 510 Meta Confocal microscope (Carl Zeiss Inc.).

In separate studies, RAECs seeded constructs were labeled with Cell Tracker Green CMFDA (Invitrogen) on the last day of culture (Day 7), by removing the complete culture media and circulating serum free CMFDA containing DMEM (Cellgro) for 45 minutes at 37° C. CMFDA containing media was then replaced with complete MCDB-131 and the constructs were incubated for 45 minutes. CMFDA-labeled constructs were then removed from the bioreactor, dissected, placed in Slowfade (Invitrogen) and imaged on a 510 Meta Confocal microscope (Carl Zeiss Inc.).

+ Open protocol
+ Expand
2

Fluorescent Labeling of Cultured Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

In a subset of studies, RAECs were labeled with DiI or DiO on the day of recellularization. Briefly, media was removed from a confluent plate of RAECs and replaced with DPBS containing 5 μM SP-DiIC18 or SP-DiOC18 (Invitrogen). After 5 minutes of incubation at 37° C., plates were transferred to a refrigerator and incubated for 15 minutes at 4° C. Plates were then washed once with PBS and allowed to recover for 2 hours at 37° C. in culture media before isolation and construct seeding. At the end of the experiment, constructs were removed from the bioreactor and imaged on a Stereo Discovery V20 Macro Stereo (Carl Zeiss Inc.), dissected, placed in Slowfade (Invitrogen) and imaged on a 510 Meta Confocal microscope (Carl Zeiss Inc.).

In separate studies, RAECs seeded constructs were labeled with Cell Tracker Green CMFDA (Invitrogen) on the last day of culture (Day 7), by removing the complete culture media and circulating serum free CMFDA containing DMEM (Cellgro) for 45 minutes at 37° C. CMFDA containing media was then replaced with complete MCDB-131 and the constructs were incubated for 45 minutes. CMFDA-labeled constructs were then removed from the bioreactor, dissected, placed in Slowfade (Invitrogen) and imaged on a 510 Meta Confocal microscope (Carl Zeiss Inc.).

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!