For blood culture, 1–3 ml of whole blood from venous puncture were inoculated into a pediatric bottle (Pedibact®, Becton-Dickinson, Franklin Lakes, NJ, USA) and incubated into automatic system Bactec9050 (Becton-Dickinson, Franklin Lakes, NJ, USA), for 5 days. All positive cultures with a Gram stain compatible to S. aureus were sub-cultured into blood agar plates and incubated overnight at 37°C in a 5% CO2 atmosphere. Presumptive identification of Staphylococci was performed on the basis of colony morphology and β-hemolysis test. Colonies compatible with S. aureus were confirmed by catalase and third generation Pastorex coagulase (Hercules California, USA) test. Due to financial limitations associated to the cost of DNA microarray assay, we randomly selected 84 isolates (±20% of the total of positives) from 2001 to 2009 for molecular characterization and assessment of antimicrobial susceptibility.
Bactec 9050
The BACTEC 9050 is a fully automated blood culture system designed for the detection and identification of microorganisms in clinical samples. It utilizes a continuously monitoring technology to detect the presence of microbial growth in blood culture bottles. The system provides a standardized and efficient process for the rapid detection of bloodstream infections.
Lab products found in correlation
37 protocols using bactec 9050
Surveillance of Pediatric Invasive Bacterial Infections
For blood culture, 1–3 ml of whole blood from venous puncture were inoculated into a pediatric bottle (Pedibact®, Becton-Dickinson, Franklin Lakes, NJ, USA) and incubated into automatic system Bactec9050 (Becton-Dickinson, Franklin Lakes, NJ, USA), for 5 days. All positive cultures with a Gram stain compatible to S. aureus were sub-cultured into blood agar plates and incubated overnight at 37°C in a 5% CO2 atmosphere. Presumptive identification of Staphylococci was performed on the basis of colony morphology and β-hemolysis test. Colonies compatible with S. aureus were confirmed by catalase and third generation Pastorex coagulase (Hercules California, USA) test. Due to financial limitations associated to the cost of DNA microarray assay, we randomly selected 84 isolates (±20% of the total of positives) from 2001 to 2009 for molecular characterization and assessment of antimicrobial susceptibility.
Pediatric Blood Sampling for Malaria and Bacterial Infections
Bacteremia in Kenyan Children
Bacteremia in Febrile Neutropenic Cancer Patients
Pneumococcal DNA Detection Protocol
For S. pneumoniae DNA amplification, each clinical specimen was run in triplicate for detection of lytA gene. Based on our validation studies, we defined a positive result for S. pneumoniae as a specimen that yielded a Ct value of <40 in 2/3 replicates by rt-PCR. Values ≥40 were considered equivocal and were repeated, and were considered positive if the repeat value was <40 in 2/3 replicates. Each specimen was tested for the presence of the housekeeping gene RNase P to demonstrate the presence and successful extraction of human cellular DNA [22 (link)].
Brucella Blood Culture Protocol
Neonatal Sepsis Diagnosis Protocol
All of the blood samples were taken at the bedside, and then immediately transported to the Microbiology laboratory for further inoculation on suitable culture media and further analysis. Bactec microbial detection system (Bactec 9050, Becton-Dickinson Company, United States) was used for blood cultures. Subcultures were made on blood and MacConkey agar. Isolates were then processed on the VITEK 2 system for identification and antimicrobial susceptibility.
Bacterial Pathogen Isolation from Blood and Stool
Malaria, Hemoglobin, and Bloodstream Infections
Quantitative Biomarkers in Sepsis
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!