The largest database of trusted experimental protocols

3 protocols using ab26120

1

Quantitative Immunofluorescence Imaging of Intestinal Tissues

Check if the same lab product or an alternative is used in the 5 most similar protocols
Intestinal tissues were fixed in 4% paraformaldehyde, rehydrated in 20% sucrose, and frozen in OCT media (Sakura). Tissues were cut into 7-8μm sections and treated with ice cold acetone. Sections were treated with biotin-avidin blocking reagent when necessary (Vector labs) and stained with the following biotinylated or directly conjugated antibodies: CD8β (YTS156.7.7, Biolegend), CD4 (RM4-5, eBioscience), CD103 (M290, BD Biosciences), CD90.1 (HIS5.1, eBioscience), Epcam (G8.8, Biolegend), CD11c (HL3, BD Biosciences), B220 (RA3-6B2, eBioscience). Rabbit anti-Yersinia pseudotuberculosis (ab26120, Abcam) and anti-rabbit Dylight 649 (ab96926, Abcam) were used to stain for bacterial antigens. Stained slides were mounted with Prolong Gold antifade reagent (Invitrogen), imaged using a Nikon 90i, and analyzed using Adobe Photoshop software.
The number of OT-I cells/villus was determined by sectioning a ‘Swiss roll’52 (link) of the distal third of the small intesine. Five or more sections/mouse that were at least 400μm apart were stained and imaged. A villus and the underlying submucosa and muscularis were considered a single villus, and the number of OT-I cells in each region was determined. The number of OT-I cells/villus were binned and plotted as the percentage of villi containing a given range of OT-I cells.
+ Open protocol
+ Expand
2

Quantitative Immunofluorescence Imaging of Intestinal Tissues

Check if the same lab product or an alternative is used in the 5 most similar protocols
Intestinal tissues were fixed in 4% paraformaldehyde, rehydrated in 20% sucrose, and frozen in OCT media (Sakura). Tissues were cut into 7-8μm sections and treated with ice cold acetone. Sections were treated with biotin-avidin blocking reagent when necessary (Vector labs) and stained with the following biotinylated or directly conjugated antibodies: CD8β (YTS156.7.7, Biolegend), CD4 (RM4-5, eBioscience), CD103 (M290, BD Biosciences), CD90.1 (HIS5.1, eBioscience), Epcam (G8.8, Biolegend), CD11c (HL3, BD Biosciences), B220 (RA3-6B2, eBioscience). Rabbit anti-Yersinia pseudotuberculosis (ab26120, Abcam) and anti-rabbit Dylight 649 (ab96926, Abcam) were used to stain for bacterial antigens. Stained slides were mounted with Prolong Gold antifade reagent (Invitrogen), imaged using a Nikon 90i, and analyzed using Adobe Photoshop software.
The number of OT-I cells/villus was determined by sectioning a ‘Swiss roll’52 (link) of the distal third of the small intesine. Five or more sections/mouse that were at least 400μm apart were stained and imaged. A villus and the underlying submucosa and muscularis were considered a single villus, and the number of OT-I cells in each region was determined. The number of OT-I cells/villus were binned and plotted as the percentage of villi containing a given range of OT-I cells.
+ Open protocol
+ Expand
3

Visualizing Y. pseudotuberculosis in Spleen

Check if the same lab product or an alternative is used in the 5 most similar protocols
Spleen from infected animals were harvested 5 days after infection and fixed directly in 1% PFA (paraformaldehyde) at 4°C overnight. Fixed tissues were washed extensively using PBS, incubated overnight in 30% sucrose at 4°C, and embedded in optimum cutting temperature blocks. Sections (8 μM) were prepared using cryostat (Thermo Fisher Scientific). Sections were blocked and incubated with anti–Y. pseudotuberculosis (1:4000; ab26120, Abcam) for 1 hour at room temperature, followed by secondary antibody (1:500; Thermo Fisher Scientific, goat anti-rabbit 594) and 4′,6-diamidino-2-phenylindole for 30 min. Immunofluorescence of fixed tissues were scanned using Zeiss Axio Scan.Z1.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!