The largest database of trusted experimental protocols

Multi site electrodes

Manufactured by NeuroNexus
Sourced in United States

Multi-site electrodes are a type of laboratory equipment used for recording electrical signals from multiple locations simultaneously. They consist of an array of individual electrodes that can be placed in various positions to capture neural activity from different parts of a biological sample. The core function of these electrodes is to facilitate the simultaneous recording of electrical signals, allowing researchers to study the coordination and interactions between different regions of the nervous system.

Automatically generated - may contain errors

Lab products found in correlation

6 protocols using multi site electrodes

1

Unilateral mPFC Recordings in Mice

Check if the same lab product or an alternative is used in the 5 most similar protocols
Multisite extracellular recordings were performed unilaterally in the mPFC of P23-25 and P38-40 mice. The adapter for head fixation was implanted at least 5 days before recordings. Under isoflurane anesthesia (5% induction, 2.5% maintenance), a metal head-post (Luigs and Neumann, Germany) was attached to the skull with dental cement and a craniotomy was performed above the mPFC (0.5–2.0 mm anterior to bregma, 0.1–0.5 mm right to the midline) and protected by a customized synthetic window. A silver wire was implanted between skull and brain tissue above the cerebellum and served as ground and reference. 0.5% bupivacaine/1% lidocaine was locally applied to cutting edges. After recovery from anesthesia, mice were returned to their home cage. After recovery from the surgery, mice were accustomed to head-fixation and trained to run on a custom-made spinning disc. For non-anesthetized recordings, craniotomies were uncovered and multi-site electrodes (NeuroNexus, MI, USA) were inserted into the mPFC (one-shank, A1 × 16 recording sites, 100 µm spacing, 2.0 mm deep).
Extracellular signals were band-pass filtered (0.1–9000 Hz) and digitized (32 kHz) with a multichannel extracellular amplifier (Digital Lynx SX; Neuralynx, Bozeman, MO, USA). Electrode position was confirmed in brain slices postmortem.
+ Open protocol
+ Expand
2

Extracellular Recordings in Developing Mouse mPFC

Check if the same lab product or an alternative is used in the 5 most similar protocols
Multi-site extracellular recordings were performed unilaterally or bilaterally in the mPFC of non-anesthetized or anesthetized P5-40 mice. Mice were on a heating blanket during the entire procedure. Under isoflurane anesthesia (induction: 5%; maintenance: 2.5%), a craniotomy was performed above the mPFC (0.5 mm anterior to bregma, 0.1–0.5 mm lateral to the midline). Pups were head-fixed into a stereotaxic apparatus using two plastic bars mounted on the nasal and occipital bones with dental cement. Multi-site electrodes (NeuroNexus, MI, USA) were inserted into the mPFC (four-shank, A4 × 4 recording sites, 100 µm spacing, 125 µm shank distance, 1.8–2.0 mm deep). A silver wire was inserted into the cerebellum and served as ground and reference. For non-anesthetized and anesthetized recordings, pups were allowed to recover for 30 min prior to recordings. For anesthetized recordings, urethane (1 mg/g body weight) was injected intraperitoneally prior to the surgery.
+ Open protocol
+ Expand
3

Multi-site Extracellular Recordings in Murine mPFC

Check if the same lab product or an alternative is used in the 5 most similar protocols
Multi-site extracellular recordings were performed unilaterally or bilaterally in the mPFC of non-anesthetized and anesthetized P7-40 mice. Under isoflurane anesthesia (induction: 5%; maintenance: 2.5%), a craniotomy was performed above the mPFC (0.5 mm anterior to bregma, 0.1-0.5 mm lateral to the midline). Mice were head-fixed into a stereotaxic apparatus using two plastic bars mounted on the nasal and occipital bones with dental cement. Multi-site electrodes (NeuroNexus, MI, USA) were inserted into the mPFC (four-shank, A4x4 recording sites, 100 μm spacing, 125 μm shank distance, 1.8-2.0 mm deep). A silver wire was inserted into the cerebellum and served as ground and reference. Pups were allowed to recover for 30 min prior to recordings. For recordings in anesthetized mice, urethane (1 mg/g body weight) was injected intraperitoneally prior to the surgery. Extracellular signals were band-pass filtered (0.1-9,000 Hz) and digitized (32 kHz) with a multichannel extracellular amplifier (Digital Lynx SX; Neuralynx, Bozeman, MO, USA). Electrode position was confirmed in brain slices postmortem.
+ Open protocol
+ Expand
4

Simultaneous Recordings from Mouse PFC and HC

Check if the same lab product or an alternative is used in the 5 most similar protocols
Mouse pups were initially anesthetized with isoflurane, fixed into the stereotaxic apparatus, and local anesthetic was administered. Multi-site electrodes (NeuroNexus, Ann Arbor, MI) were inserted to the skull surface into the prefrontal cortex (PFC) and hippocampus (HC). Two silver wires were inserted into cerebellum and served as ground and reference electrodes. Simultaneous recordings of local field potential (LFP) and multi-unit activity were performed from the prelimbic subdivision of the PFC and the CA1 area of the intermediate HC as described [58 (link)]. See supplementary methods for further detail.
+ Open protocol
+ Expand
5

In Vivo Electrophysiology in Mouse Brain

Check if the same lab product or an alternative is used in the 5 most similar protocols
Mouse pups were initially anesthetized with isoflurane (induction 5% in O2) followed by i.p. administration of urethane (1 g/kg body weight). The head of the pup was fixed into the stereotaxic apparatus using two small metal bars fixed with dental cement on the nasal and occipital bones, respectively. The bone over the regions of interest (prelimbic subdivision (PL) of the PFC, intermediate HP) was carefully removed by drilling holes of <0.5 mm in diameter. Removal of the dura mater by drilling was avoided, since leakage of cerebrospinal fluid or blood damps the cortical activity and neuronal firing. The body of the animal was surrounded by cotton and kept at a constant temperature of 37 °C by placing it on a heating blanket. A local anesthetic (0.25% bupivacaine/1% lidocaine) was administrated. After 20–30 min recovery period, multi-site electrodes (Neuronexus) were inserted perpendicularly to the skull surface into PL until a depth of 1.7–2.5 mm and at 20° from the vertical plane into HP at a depth of 1.2–1.7 mm. In each experiment, the electrodes were labeled with DiI (1,1′-dioctadecyl-3,3,3′,3′-tetramethyl indocarbocyanine, Invitrogen) to enable post-mortem in histological sections the reconstruction of electrode tracks in PFC and HP (Figs 2Ai,Bi and 4A,D). Two silver wires were inserted into cerebellum and served as ground and reference electrodes.
+ Open protocol
+ Expand
6

Multisite Extracellular Recordings in Mouse Prefrontal Cortex

Check if the same lab product or an alternative is used in the 5 most similar protocols
Multisite extracellular recordings were performed in the PFC of P24–39 mice. Under isoflurane anesthesia (induction: 5%; maintenance: 2.5%), a metal head-post (Luigs and Neumann) was attached to the skull with dental cement and 2-mm craniotomies were performed above PFC (0.5–2.0 mm anterior to Bregma, 0.1–0.5 mm right to Bregma) and protected by a customized synthetic window. A silver wire was implanted in the cerebellum as ground and reference electrode. Surgery was performed at least 5 days before recordings. After recovery mice were trained to run on a custom-made spinning-disc. For recordings, craniotomies were uncovered and multisite electrodes (NeuroNexus, MI, USA) were inserted into PFC (one-shank, A1x16 recording sites, 50 μm spacing, 2.0 mm deep). Extracellular signals were band-pass filtered (0.1–9,000 Hz) and digitized (32 kHz) with a multichannel extracellular amplifier (Digital Lynx SX, Neuralynx, Bozeman, MO, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!