The largest database of trusted experimental protocols

Luciferase buffer

Manufactured by Promega
Sourced in United States

Luciferase buffer is a reagent used to measure luciferase activity in bioluminescence assays. It provides the necessary components for the luciferase-catalyzed oxidation of luciferin, which results in the emission of light. The buffer is designed to optimize the luciferase reaction and ensure reliable and reproducible luminescence measurements.

Automatically generated - may contain errors

15 protocols using luciferase buffer

1

Luciferase Assay of PROX1 Variants

Check if the same lab product or an alternative is used in the 5 most similar protocols
5000 HeLa cells/well were seeded in a 96-well plate. Next day cells were transfected in the presence of Lipofectamine2000 with 25 ng of the Renilla reporter, 50 ng of the indicated reporter plasmid, 1000 ng of either pAMC-PROX1 (WT or MUT) or 1000 ng of the corresponding control vector. 36 hours after transfection cells were lysed in 30 µl/well of 1X reporter lysis buffer (Promega). Luciferase activity was measured using a luciferase buffer according to the manufacturer’s instructions (Promega). The assay was repeated two or three times using two biological replicates and the error bars represent SD ± 95%CI across all experiments. For each sample, the firefly luciferase values were normalized to the Renilla luciferase values.
+ Open protocol
+ Expand
2

Luciferase Assay for Protein Quantification

Check if the same lab product or an alternative is used in the 5 most similar protocols
For luciferase assays, approximately 24 hrs after transfection, cells were lysed in a 100 μl Luciferase Assay Tropix Lysis solution (ThermoFisher Scientific), with 0.5 mM DTT. Cells were scraped, transferred to Eppendorf tubes and then centrifuged for 3 minutes at 12,000 g. Twenty μl of the supernatant was used in a 96-well microtiter plate, and a 50 μl luciferase buffer (Promega, Madison, WI, USA) was added. A Luminometer (Labsystem, Luminoscan RT) used to measure lights units. Each experiment was repeated three times with three independent parallels for each experiment, and luciferase values were corrected for protein content in each sample. The total protein concentration was measured using the MN protein quantification assay (Macherey-Nagel GmbH, Düren, Germany).
+ Open protocol
+ Expand
3

Intracellular Signaling of Anti-CD137 Antibodies

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat #ATCC CCL-119) lentifected with NFkβ (Qiagen; Cat #CLS-013L-1) or SRF (Qiagen; Cat #CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat #E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat #11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFkβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
4

Comparative Analysis of Anti-CD137 Antibodies

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat # ATCC CCL-119) lentifected with NFkβ (Qiagen; Cat # CLS-013L-1) or SRF (Qiagen; Cat # CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat # E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat #11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFkβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
5

Comparing Anti-CD137 Antibody Signaling

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat# ATCC CCL-119) lentifected with NFkβ (Qiagen; Cat# CLS-013L-1) or SRF (Qiagen; Cat# CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat# E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat#11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFkβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
6

Comparative analysis of anti-CD137 agonist signaling

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat# ATCC CCL-119) lentifected with NFκβ (Qiagen; Cat# CLS-013L-1) or SRF (Qiagen; Cat# CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat# E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat#11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFκβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
7

Differential Intracellular Signaling by Anti-CD137 Antibodies

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat# ATCC CCL-119) lentifected with NFkβ (Qiagen; Cat# CLS-013L-1) or SRF (Qiagen; Cat# CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat# E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat#11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFkβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
8

Differential Intracellular Signaling of Anti-CD137 Antibodies

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat #ATCC CCL-119) lentifected with NFκβ (Qiagen; Cat #CLS-013L-1) or SRF (Qiagen; Cat #CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat #E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat #11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFκβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
9

Intracellular Signaling Comparison of Anti-CD137 Antibodies

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

To further assess the differences between anti-CD137 agonistic antibodies, intracellular signaling was assessed in vitro. Specifically, CCL-119 T cells (ATCC; Cat #ATCC CCL-119) lentifected with NFκβ (Qiagen; Cat #CLS-013L-1) or SRF (Qiagen; Cat #CLS-010L-1) were stimulated with 250 ng/mL of plate-bound anti-CD3 (clone OKT3) in conjunction with varying concentrations of plate-bound mAb1, mAb8, mAb4, mAb5 and isotype control. After stimulation for 16 hours in RPMI media without additives, cells were lysed in luciferase buffer (Promega; Cat #E263B) and relative light units (RLUs) were acquired on a BioTek Synergy H1 microplate reader (Cat #11-120-533). Raw RLU data was then exported to Microsoft Excel and fold-induction was calculated by dividing RLUs from stimulated conditions over unstimulated controls.

FIG. 30 provides the results, showing minimal NFκβ and SRF activity of mAb4 and mAb5 relative to mAb1 and its affinity-matured variant, mAb8. Overall, these results indicate mAb1 induces intracellular signaling differently than mAb4 and mAb5.

+ Open protocol
+ Expand
10

Luciferase Assay: Measuring Transfection Efficiency

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells were lysed 24 h post-transfection in 100 µL Luciferase Assay Tropix Lysis solution (Applied Biosystems, Foster City, CA, USA) with DTT added to a final concentration of 0.5 mM (Sigma, St. Louis, MO, USA) freshly added. Cells were scraped and transferred to Eppendorf tubes, followed by 3 min centrifugation at 12,000× g at room temperature in a Microfuge 22R centrifuge (Beckman Coulter, Bea, CA, USA). A 20 µL aliquot of each supernatant was subsequently transferred to 96-well microtiter plate and 50 µL luciferase buffer (Promega, Madison, WI, USA) was added. Light units were measured using CLARIOstar monochromator (520–620 nm) microplate reader (BMG Labtech GmbH, Ortenberg, Germany).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!