The largest database of trusted experimental protocols

Positive or negative ion mode calibration mixes

Manufactured by Thermo Fisher Scientific

Positive or negative ion mode calibration mixes are laboratory reagents used to calibrate and verify the performance of mass spectrometry instruments. These mixes contain a set of known compounds that span a specific mass-to-charge ratio range, allowing for accurate mass and resolution calibration in both positive and negative ion detection modes.

Automatically generated - may contain errors

2 protocols using positive or negative ion mode calibration mixes

1

Quantitative Analysis of Metabolites by UHPLC-MS

Check if the same lab product or an alternative is used in the 5 most similar protocols
Twenty uL of each extracted supernatant sample were injected into an ultra-high-performance liquid chromatography (UHPLC) system (Ultimate 3000, Thermo): samples were loaded onto a Reprosil C18 column (2.0mm× 150 mm, 2.5 μm-DrMaisch, Germany) for metabolite separation. Chromatographic separations were made at flow rate of 0.2 ml/min. A 0–100% linear gradient of solvent A (ddH2O, 0.1% formic acid) to B (acetonitrile, 0.1% formic acid) was employed over 20 min, returning to 100% A in 2 min and holding solvent A for a 6-min post time hold. The UHPLC system was coupled online with a Q Exactive mass spectrometer (Thermo Fisher, Rockford, IL) scanning in full MS mode (2 μ scans) at resolution of 70,000 in the 67 to 1,000 m/z range, with 3.8 kV spray voltage, 40 sheath gas, and 25 auxiliary gas. The system was operated in positive ion mode. Calibration was performed before each analysis against positive or negative ion mode calibration mixes (Thermo Fisher) to ensure error of the intact mass within the sub ppm range. Metabolite assignments were performed using MAVEN v5.2 [40 (link)]. Each replicate was analysed separately and a p-value < 0.01 was used to infer significance for all abundance comparisons between sets of triplicates.
+ Open protocol
+ Expand
2

UHPLC-MS Metabolite Profiling Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Twenty μL of extracted supernatant samples was injected into an ultra-high-performance liquid chromatography (UHPLC) system (Ultimate 3000, Thermo) and run on a positive mode: samples were loaded on to a Reprosil C18 column (2.0 mm× 150 mm, 2.5 μm—Dr Maisch, Germany) for metabolite separation. Chromatographic separations were made at a column temperature of 30 °C and a flow rate of 0.2 mL/min. For positive ion mode (+) MS analyses, a 0–100% linear gradient of solvent A (ddH2O, 0.1% formic acid) to B (Acetonitrile, 0.1%formic acid) was employed over 20 min, returning to 100% A in 2 min and holding solvent A for a 1-min post time hold. Acetonitrile, formic acid, and HPLC-grade water and standards (≥98% chemical purity) were purchased from Sigma Aldrich. The UHPLC system was coupled online with a Q Exactive mass spectrometer (Thermo) scanning in full MS mode (2 μscans) at resolution of 70,000 in the 67 to 1000 m/z range, a target of 1106 ions and a maximum ion injection time (IT) of 35ms with 3.8 kV spray voltage, 40 sheath gas, and 25 auxiliary gas. The system was operated in positive ion mode. Calibration was performed before each analysis against positive or negative ion mode calibration mixes (Pierce, Thermo Fisher, Rockford, IL) to ensure error of the intact mass within the sub ppm range.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!