The largest database of trusted experimental protocols

9 protocols using enhanced chemiluminescence plus system

1

Western Blot Analysis of γH2AX, TBX18, and EAAT2

Check if the same lab product or an alternative is used in the 5 most similar protocols
All female samples were run on one gel under the same conditions; all male samples were run on another gel under the same conditions. Western immunoblotting was conducted as described previously [6 (link)].
Membranes were stained overnight using primary antibodies against γH2AX (1:500, Cell Signaling, Danvers, MA), TBX18 and EAAT2 (1:1000, Abcam, Toronto, ON), and actin (1:2000, Abcam, Toronto, ON). Primary antibody binding was detected using horseradish peroxidase-conjugated secondary antibodies and the Enhanced Chemiluminescence Plus System (Amersham Biosciences, Baie d'Urfe, Quebec). Chemiluminescence was detected using a FluorChem HD2 camera with FluorChem software (Cell Biosciences); gel images were saved and processed using Adobe Professional under the same conditions. Bands corresponding to antibody binding in all samples were carefully cropped; no images were spliced. The membranes were stained with Coomassie blue (BioRad, Hercules, CA) to confirm equal protein loading. Signals were quantified using the NIH Image J64 software and normalized relative to actin or Coomassie staining.
+ Open protocol
+ Expand
2

Western Blot Analysis of PFC Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols
Western immunoblotting was conducted as previously described [14 (link), 33 (link), 76 (link)]. In brief, around 50 mg of PFC tissues were sonicated in ice-cold 1% SDS and immediately boiled. Protein concentrations were ascertained using the Bradford assay (BioRad, Hercules, CA). Equal amounts of protein (10-30 μg) were separated by SDS-PAGE into slab gels of 10-15% polyacrylamide and transferred to polyvinylidene difluoride membranes (Amersham Biosciences, Baie d'Urfé, Quebec). The membranes were incubated with primary antibodies against APE1, OGG1, DNMT1, DNMT3A, MeCP2, BMP4, DNMT3B, Laminin 1-2 (1:1000, Abcam), and actin (1:2000, Abcam) overnight at 4°C. Primary antibody binding was detected using horseradish peroxidase-conjugated secondary antibodies and the Enhanced Chemiluminescence Plus System (Amersham Biosciences, Baie d'Urfé, Quebec). Chemiluminescence was detected using a FluorChem HD2 camera with FluorChem software (Cell Biosciences). The membranes were stained with Coomassie blue (BioRad, Hercules, CA) to confirm equal protein loading. Signals were quantified using NIH Image J64 software and normalised relative to actin or Coomassie staining.
+ Open protocol
+ Expand
3

Sophoridine-Induced Apoptosis Regulation

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sophoridine was kindly provided by National Institute for the Control of Pharmaceutical and Biological Products. Its purity was at least 95% as determined by HPLC analysis. Rhodamine 123, Hoechst 33,342 and Cycloheximide (CHX) were obtained from Sigma-Aldrich (MO, USA). Annexin V/PI apoptosis kit and Cell Counting Kit-8 (CCK-8) were relatively purchased from Invitrogen (CA, USA) or Dojindo Laboratories (Japan). DC protein assay kits were purchased from Bio-Rad, and the enhanced chemiluminescence plus system was purchased from Amersham Pharmacia Biotech. The antibodies against Bax, Bad, Bcl-XL, Bcl-2, cleaved-caspase 3 (Asp175), PARP cyt C and GAPDH were purchased from Cell Signaling Technology (MA, USA). ERK, JUNK and p-38 antibodies were purchased from Santa Cruz. Antibodies against Cyclin A, CDK2 and Cyclin D1 were purchased from Epitomics (CA, USA). PCNA antibody was obtained from Abcam (Cambridge, UK).
+ Open protocol
+ Expand
4

Western Blot Analysis of Hippocampal Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols
Western immunoblotting was carried out as previously described (Silasi et al., 2004 (link); Kovalchuk et al., 2016a (link),b (link),c (link)). In brief, hippocampal tissues were sonicated in ice-cold 1% SDS and immediately boiled. Protein concentrations were determined using the Bradford assay (BioRad, Hercules, CA). Equal amounts of protein (10–30 μg) were separated by SDS-PAGE into slab gels of 10–15% polyacrylamide and transferred to polyvinylidene difluoride membranes (Amersham Biosciences, Baie d'Urfé, Quebec). Eight membranes were prepared. The membranes were incubated with primary antibodies against 4-HNE, AKT 1, NPAS4 (1:1,000, Abcam), ERK1/2, FOSB, PCNA (1:1,000, Cell Signaling), and actin (1:2,000, Abcam) overnight at 4°C. Primary antibody binding was detected using horseradish peroxidase-conjugated secondary antibodies and the Enhanced Chemiluminescence Plus System (Amersham Biosciences, Baie d'Urfé, Quebec). Chemiluminescence was detected using a FluorChem HD2 camera with FluorChem software (Cell Biosciences). The membranes were stained with Coomassie blue (BioRad, Hercules, CA) to confirm equal protein loading. Signals were quantified using NIH Image J64 software and normalized relative to actin or Coomassie staining.
+ Open protocol
+ Expand
5

Western Blot Analysis of Apoptosis Markers

Check if the same lab product or an alternative is used in the 5 most similar protocols
The cells were lysed using : Radioimmunoprecipitation assay buffer (RIPA), and the proteins were separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and incubated with the primary antibodies such as HIF-1, cleaved poly (ADP-ribose) polymerase (PARP), cleaved caspase-3, and actin. After the incubation with subsequent secondary antibodies, the bands were detected using the enhanced chemiluminescence plus system (Amersham Biosciences).
+ Open protocol
+ Expand
6

Immunoblotting Analysis of miRNA Machinery

Check if the same lab product or an alternative is used in the 5 most similar protocols
Western immunoblotting was conducted as previously described [114 (link)-117 (link)]. In brief, around 50 mg of PFC tissues were sonicated in ice-cold 1% SDS and immediately boiled. Protein concentrations were determined using the Bradford assay (BioRad, Hercules, CA). Equal amounts of protein (10-30 μg) were separated by SDS-PAGE into slab gels of 10-15% polyacrylamide and transferred to polyvinylidene difluoride membranes (Amersham Biosciences, Baie d’Urfé, Quebec). Eight membranes were prepared in total. Due to scarce amount of tissues, membranes were re-used and re-probed to allow for analysis of miRNA machinery and targets (this study), as well as epigenetic regulators (Kovalchuk et al., 2017, Aging, in press). The membranes were incubated with primary antibodies against BDNF, Dicer and Ago2 (1:1000, Abcam), and actin (1:2000, Abcam) overnight at 4° C. Primary antibody binding was detected using horseradish peroxidase-conjugated secondary antibodies and the Enhanced Chemiluminescence Plus System (Amersham Biosciences, Baie d’Urfé, Quebec). Chemiluminescence was detected using a FluorChem HD2 camera with FluorChem software (Cell Biosciences). The membranes were stained with Coomassie blue (BioRad, Hercules, CA) to confirm equal protein loading. Signals were quantified using NIH Image J64 software and normalised relative to actin or Coomassie staining.
+ Open protocol
+ Expand
7

ANTXR1 Protein Expression Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Muscle tissues were lysed in TNT lysis buffer (50 mM Tris [pH 7.5], 75 mM NaCl, and 1% Triton X-100 plus complete protease inhibitor cocktail [Roche]) and clarified by centrifugation. Protein extracts were quantified with a BCA assay (Pierce), normalized, separated by SDS PAGE, transferred to a polyvinylidene difluoride membrane (Millipore) and blotted using a rabbit monoclonal ANTXR1 antibody (clone 37), followed by an HRP-anti-rabbit secondary (Jackson Immunoresearch). Proteins were visualized using the enhanced chemiluminescence plus system (Amersham) according to the supplier’s instructions.
+ Open protocol
+ Expand
8

Quantitative Analysis of DNA Repair Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols
Western immunoblotting was conducted as described previously [50 (link)]. The membranes were incubated with primary antibodies against APE1, OGG1, DNMT1, DNMT3a, MeCP2 (1:1000, Abcam) and actin (1:2000, Abcam) overnight at 4° C. Primary antibody binding was detected using horseradish peroxidase-conjugated secondary antibodies and the Enhanced Chemiluminescence Plus System (Amersham Biosciences, Baie d'Urfé, Quebec). Chemiluminescence was detected using a FluorChem HD2 camera with FluorChem software (Cell Biosciences). The membranes were stained with Coomassie blue (BioRad, Hercules, CA) to confirm equal protein loading. Signals were quantified using NIH Image J64 software and normalised relative to actin or Coomassie staining.
+ Open protocol
+ Expand
9

Western Blotting for Protein Detection

Check if the same lab product or an alternative is used in the 5 most similar protocols
Western blotting was carried out essentially as described previously [23 ]. A total of 30 μg of protein were separated by 12% SDS-PAGE and proteins subsequently were transferred to 0.2 μM nitrocellulose membranes by a wet transfer system. The membranes were blocked with 5% nonfat skim milk in 1x TBS for 1 hr. After blocking, the membranes were incubated with either a 1 : 3000 dilution of a mouse monoclonal anti-human haptoglobin antibody (sc-365396, Santa Cruz Biotechnology Inc., Santa Cruz, CA) for 2 hrs and subsequently incubated with a 1 : 8000 dilution of a rabbit anti-mouse IgG secondary antibody conjugated with horseradish peroxidase (A9044, Sigma, Sigma-Aldrich, St Louis, MO) for 1 hr or with a 1 : 8000 dilution of a polyclonal rabbit anti-human apolipoprotein A-I antibody (sc-30089, Santa Cruz Biotechnology Inc.) for 2 hrs followed by a 1 : 4000 dilution of a HRP-conjugated goat anti-rabbit IgG polyclonal antibody (Pierce Biotechnology, USA) for 1 hr. Protein expression signal was developed using the Enhanced Chemiluminescence Plus system (Amersham Biosciences).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!