Magnetic properties were studied using vibrating sample magnetometer (VSM, ADE Model 4 HF VSM, ADE, Lowell, MA, USA) under the field of up to 15 kOe at room temperature. To determine the relaxivity, the nanoprobe was diluted in distilled water at an iron concentration range of 0 to 25 μg/mL. The samples were transferred to a 96-well plate, and T2 relaxation time was determined using a whole-body MR scanner (Signa HDx 3.0 T, GE, New York, NY, USA). The fluorescence properties were determined with IVIS® Lumina XR Imaging System (Caliper Life Sciences, Hopkinton, MA, USA).
Signa hdx 3.0t
The Signa HDx 3.0T is a magnetic resonance imaging (MRI) system developed by GE Healthcare. It operates at a field strength of 3.0 Tesla, providing high-resolution imaging capabilities. The system is designed to enable efficient and versatile imaging across a range of clinical applications.
Lab products found in correlation
25 protocols using signa hdx 3.0t
Characterization of SPPTC Nanoparticles
Magnetic properties were studied using vibrating sample magnetometer (VSM, ADE Model 4 HF VSM, ADE, Lowell, MA, USA) under the field of up to 15 kOe at room temperature. To determine the relaxivity, the nanoprobe was diluted in distilled water at an iron concentration range of 0 to 25 μg/mL. The samples were transferred to a 96-well plate, and T2 relaxation time was determined using a whole-body MR scanner (Signa HDx 3.0 T, GE, New York, NY, USA). The fluorescence properties were determined with IVIS® Lumina XR Imaging System (Caliper Life Sciences, Hopkinton, MA, USA).
MRI Evaluation of Spinal Cord Involvement
Functional MRI Acquisition Protocol for Brain Imaging
Magnetic Resonance Imaging for Pancreatic Lesions
The following imaging parameters were collected: tumor location (head–neck or body–tail), tumor size, MPD diameter, and the presence of enhanced MN with a size ≥5 mm. The MPD diameter was measured at the point of the maximally dilated pancreatic duct (16 (link)). Enhanced MN was considered if there were any enhancing solid papillary protuberances within the lesions (16 (link)). PA was considered if the ratio between the MPD diameter and the width of the pancreas parenchyma is larger than 0.5 (27 (link)).
MRI Imaging of Mn-IONPs Contrast Agents
Multimodal neuroimaging protocol for brain analysis
The high-resolution T1 weighted brain volume was collected with a 3D MRI sequence [repetition time (TR) = 8.1 ms; echo time (TE) = 3.1 ms; voxel size = 1 × 1 × 1 mm3; flip angle = 13°; 176 slices].
Resting-state fMRI data was obtained with a single-shot gradient echo-planar imaging sequence (TR = 2 s; TE = 30 ms; matrix size = 64 × 64; field of view (FOV) = 240 × 240 mm2; voxel size = 3.75 × 3.75 × 4.0 mm3; 40 slices; 180 volumes; flip angle = 90°). All subjects were required to close their eyes and remain still without falling asleep.
DTI data was obtained using an echo planar imaging sequence [TR = 1 s; TE = 64 ms; matrix size = 128 × 128; field of view = 256 × 256 mm2; voxel size = 2.0 × 2.0 × 3.0 mm3; flip angle = 90°; b0 = 0 (3 repeated acquisitions), b = 1000 s/mm2, 55 directions; slice thickness = 3 mm, 45 slices].
During the scanning process, we took measures, such as a foam pad and ear plugs for each participant, to reduce head motion and noise.
Diffusion Tensor Imaging Protocol for Neuroimaging
Image preprocessing was performed using PANDA (
3T MRE Phantom Stiffness Measurement
Although the stiffness in MRE is usually reported as a complex shear modulus in kilopascals, we transformed the storage map to an SWS map using equation (5) for comparison between pSWE, MRE and a rheometer, with stiffness reported in metres per second. ROI size was set to 6×6 mm2, approximating the ROI size of VTQ, containing four pixels each. ROI was set at 2.0, 3.0, 4.0, 5.0 and 6.0 cm depth from the passive pneumatic driver on the velocity map (
Iron Concentration Quantification by MRI
Evaluation of a Novel 3T MRI Coil
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!