The largest database of trusted experimental protocols

Jem 2100f tem stem system

Manufactured by JEOL

The JEM-2100F TEM/STEM system is a high-performance transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) designed and manufactured by JEOL. It is capable of providing high-resolution imaging and analytical capabilities for a wide range of applications in materials science, nanotechnology, and life sciences research.

Automatically generated - may contain errors

2 protocols using jem 2100f tem stem system

1

Characterization of Intermetallic and Nanoporous Alloys

Check if the same lab product or an alternative is used in the 5 most similar protocols
The crystal structures of Co5Zn21 ribbons and dealloyed nanoporous Co were characterized by X-ray diffraction with Co–Kα radiation (Rigaku SmartLab 3 kW). The microstructure, chemical composition and grain size of the specimens were investigated using field-emission scanning electron microscope (JEOL JIB-4600F, 15 keV) equipped with an X-ray energy-dispersive spectroscopy (EDS) and an electron backscatter diffraction (EBSD) imaging system. The structural and chemical analysis was characterized by a JEOL JEM-2100F TEM/STEM system with double Cs-correctors (operated at 200 kV).
+ Open protocol
+ Expand
2

Electron Diffraction Imaging Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
We employed a JEOL JEM-2100F TEM/STEM system with double Cs-correctors (operated at 200 kV) for the measurements. All the ABED patterns were recorded with a charge-coupled device camera (Gatan, US1000). A coherent electron beam was produced using a specially designed small-condenser aperture with a diameter of 3.5 μm (Daiwa Techno Systems Co., Ltd.). The convergence angle was estimated to be 1.0 mrad. The instrumental parameters such as the spherical aberration coefficient, defocus and astigmatism were precisely measured using the Ronchigram method32 . By using a scanning function of the STEM system, we were able to obtain a large number of ABED patterns (more than 10,000 frames) from a thin area near the specimen edge. The specimens with a thickness <5 nm were prepared by the conventional crushing method for the TEM/STEM observations. The ABED patterns were calculated using the multislice simulation software, which has been detailed in ref. 33 .
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!