Integrated PET/CT scanners using either Hirez-Biograph 16 (Siemens Medical Solutions, Munich, Germany) or Biograph mCT Flow (Siemens Medical Solutions, Munich, Germany) were used to perform a whole-body (skull vertex to the upper thighs) PET acquisition in the three-dimensional mode (emission time: 2 min per bed position with an axial field-of-view of 15.6 cm). A low-dose CT was performed for attenuation correction and anatomical allocation. No diagnostic contrast-enhanced CT scans were performed. Reconstruction was performed with an ordered subset expectation maximization algorithm with four iterations per eight subsets. Images were corrected for random coincidences and scatter.
Images were analyzed using Syngo.via software (Siemens Medical Solutions, Munich, Germany) by two experienced nuclear medicine physicians in consensus. For each lesion identified on transaxial images, a volume of interest (VOI) was drawn with an isocounter threshold based on 40% of the SUVmax. Maximum standardized uptake values (SUVmax), metabolic tumor volume (MTV, calculated as the sum of all lesions), and total lesion glycolysis (TLG, calculated as the sum of the products between MTV and the corresponding SUVmean) were collected.