Serum unsaturated FFAs in this study were identified on the basis of their observed accurate molecular masses and reliable isotope distributions detected by FTICR MS. Their mass error was ≤ 0.00025 Da and the relative intensity error of their isotopic peaks was < 2%. For the missing levels of unsaturated FFAs, the baseline intensity in each spectrum was adopted for the following statistical analysis.
Nanomate system
The NanoMate system is a high-performance nanoelectrospray infusion and sampling device for mass spectrometry applications. It automates the nanoelectrospray process, providing precise and reproducible sample introduction into mass spectrometers.
3 protocols using nanomate system
Identification of Serum Unsaturated FFAs
Serum unsaturated FFAs in this study were identified on the basis of their observed accurate molecular masses and reliable isotope distributions detected by FTICR MS. Their mass error was ≤ 0.00025 Da and the relative intensity error of their isotopic peaks was < 2%. For the missing levels of unsaturated FFAs, the baseline intensity in each spectrum was adopted for the following statistical analysis.
High-Resolution FTICR-MS for Fatty Acid Analysis
A mass spectrum was accumulated by 10 full scans over the m/z range of 150-400 with the resolution of 200,000 at m/z 400. A mixture of C15:0 (molecular weight, 242.22458 Da), C17:0 (270.25588 Da), and C21:0 (326.31848 Da) was used to calibrate the instrument. All mass spectra were processed using DataAnalysis 4.0 (Bruker Daltonics). The FFAs were identified based on their observed accurate molecular masses relative to theoretical values with the mass error of ≤ 0.00029 Da and reliable isotope distribution relative to theoretical distribution with relative standard deviation (RSD) of <2%. The baseline intensity in each spectrum was adopted as their intensities of missing FFAs.
Peptide Characterization via LTQ-FT Ultra MS
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!