Results were expressed as docking score (DS) values and difference in DS (ΔDS) values obtained for Dox and Sdox against the same target in order to provide more relevant information in their mechanism of action (Palmeira et al., 2012 (link)).
Moe software
MOE (Molecular Operating Environment) is a software package developed by Chemical Computing Group. It provides a comprehensive set of tools for molecular modeling, simulation, and analysis. MOE's core function is to assist researchers and scientists in the study of molecular structures and their properties.
55 protocols using moe software
Docking Analysis of Dox and Sdox Interactions
Results were expressed as docking score (DS) values and difference in DS (ΔDS) values obtained for Dox and Sdox against the same target in order to provide more relevant information in their mechanism of action (Palmeira et al., 2012 (link)).
NMDA Receptor Molecular Docking
Antibody Sequence Alignment and Clustering
Example 4
The Molecular Operating Environment (MOE) software developed by Chemical Computing Group (CCG) are used to generate alignments between the rabbit antibody clone 132, clone 154 and clone 163 and pairs of variable light and heavy chains, VL and VH, respectively from two databases:
-
- (1) The Abysis human database: a database of about 2000 known human VL/VH sequence pairs from IMGT-LigM DB; and
- (2) A human germline database: a database of germline sequences.
Humanized models show the best sequence alignments (highest identity to both the VL and VH domains) with fewest gaps. The top 100 antibody pairs from each human database are exported and clustered using kClust (Hauser, Mayer, & Soding, (2013) BMC Bioinformatics, 248).
High-Throughput Virtual Screening for PCNA Inhibitors
Antibody Sequence Alignment and Clustering
Example 4
The Molecular Operating Environment (MOE) software developed by Chemical Computing Group (CCG) are used to generate alignments between the rabbit antibody clone 132, clone 154 and clone 163 and pairs of variable light and heavy chains, VL and VH, respectively from two databases:
(1) The Abysis human database: a database of about 2000 known human VL/VH sequence pairs from IMGT-LigM DB; and
(2) A human germline database: a database of germline sequences.
Humanized models show the best sequence alignments (highest identity to both the VL and VH domains) with fewest gaps. The top 100 antibody pairs from each human database are exported and clustered using kClust (Hauser, Mayer, & Soding, (2013) BMC Bioinformatics, 248).
Humanizing Rabbit Antibody Sequences
Example 3
The Molecular Operating Environment (MOE) software developed by Chemical Computing Group (CCG) may be used to generate alignments between the rabbit antibody clones and pairs of variable light and heavy chains, VL and VH, respectively from two databases:
-
- (1) The Abysis human database: a database of about 2000 known human VL/VH sequence pairs from IMGT-LigM DB; and
- (2) A human germline database: a database of germline sequences.
Humanized models show the best sequence alignments (highest identity to both the VL and VH domains) with fewest gaps. The top 100 antibody pairs from each human database are exported and clustered using kClust (Hauser, Mayer, & Soding, (2013) BMC Bioinformatics, 248).
Protein Isoelectric Point Prediction
Blastocystis AOX Structural Modeling
Structural Modeling of mRNA and Translation Initiation
Three-dimensional structures of the mRNAs were built using the RNAcomposer server, and the resulting pdb file was visualized in Pymol and MOE software [48 (link)] (Chemical Computing Group, Montreal, Canada). Structural alignments and RMSD between two structures were calculated using the MOE software (Chemical Computing Group, Montreal, Canada). For the structural modelling of the 30S IC and pre-IC, the predicted SR IIIb and TIR until +20 from the GUG were aligned with the bound mRNA of PDBs 5lmp and 5lmv, respectively [42 (link)]. mRNA structural alignments and visualization of the resulting models were performed with Pymol software (Schrödinger, New York, New York). Alignment and secondary structure prediction of the mTufA SETI of E. coli, Shigella dysenteriae, and Salmonella enterica were performed using the PETfold web server (
Identifying Functional Patches on EBOV VP35
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!