The largest database of trusted experimental protocols

Agilent 50 m 0.2 mm 0 5 μm 95 5 methyl

Manufactured by Agilent Technologies

The Agilent 50 m×0.2 mm×0.5 μm (95/5% methyl/) is a capillary column designed for gas chromatography. It features a length of 50 meters, an internal diameter of 0.2 millimeters, and a film thickness of 0.5 micrometers. The column has a stationary phase composition of 95% methyl and 5% other constituents.

Automatically generated - may contain errors

2 protocols using agilent 50 m 0.2 mm 0 5 μm 95 5 methyl

1

Removal of Polar Compounds from Mixed Olefin Stream

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

The mixed olefin stream was contacted with silica gel (high purity, 60 Å, 70-230 mesh obtained from Sigma Aldrich) and stirred overnight to remove polar compounds. The removal of polar compounds was monitored/observed visually as the mixed olefin stream was a slight yellow color and became colorless after stirring with silica, while the silica gel turned yellow. The silica gel was removed via filtration to provide treated mixed olefins. The treated mixed olefins were then stored over molecular sieves. The mixed olefin stream and the treated mixed olefins were analyzed on an Agilent 6890 gas chromatograph equipped with an Agilent 50 m×0.2 mm×0.5 μm (95/5% methyl/phenyl-polysiloxane) HP-5 column and a flame ionization detector. FIG. 1 provides a gas chromatographic analysis trace of the mixed olefin stream (1A) and the treated mixed olefin stream (1B). These gas chromatographic traces clearly show that the silica gel removed at least a component in the mixed olefin stream that had an elution time of about 5.8 minutes. Without wishing to be limited by theory, it is believed that silica gel removed at least the octanol from the mixed decene stream.

+ Open protocol
+ Expand
2

Removal of Polar Compounds from Mixed Olefin Stream

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

The mixed olefin stream was contacted with silica gel (high purity, 60 Å, 70-230 mesh obtained from Sigma Aldrich) and stirred overnight to remove polar compounds. The removal of polar compounds was monitored/observed visually as the mixed olefin stream was a slight yellow color and became colorless after stirring with silica, while the silica gel turned yellow. The silica gel was removed via filtration to provide treated mixed olefins. The treated mixed olefins were then stored over molecular sieves. The mixed olefin stream and the treated mixed olefins were analyzed on an Agilent 6890 gas chromatograph equipped with an Agilent 50 m×0.2 mm×0.5 μm (95/5% methyl/phenyl-polysiloxane) HP-5 column and a flame ionization detector. FIG. 1 provides a gas chromatographic analysis trace of the mixed olefin stream (1A) and the treated mixed olefin stream (1B). These gas chromatographic traces clearly show that the silica gel removed at least a component in the mixed olefin stream that had an elution time of about 5.8 minutes. Without wishing to be limited by theory, it is believed that silica gel removed at least the octanol from the mixed decene stream.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!