The largest database of trusted experimental protocols

Fibrogro mitomycin c inactivated xeno free human neonatal fibroblasts

Manufactured by Merck Group

FibroGRO mitomycin C-inactivated xeno-free human neonatal fibroblasts are a type of lab equipment used for cell culture applications. They consist of human fibroblasts derived from neonatal skin that have been inactivated using mitomycin C, a chemical agent. These fibroblasts are xeno-free, meaning they do not contain any animal-derived components.

Automatically generated - may contain errors

3 protocols using fibrogro mitomycin c inactivated xeno free human neonatal fibroblasts

1

Xeno-Free Fibroblast Reprogramming Protocols

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

Cells targeted for reprogramming included BJ neonatal fibroblasts (ATCC), HDF-f fetal fibroblasts, HDF-n neonatal fibroblasts and HDF-a adult fibroblasts (ScienCell), and XFF xeno-free neonatal fibroblasts (Millipore). Expansion culture was carried out in BJ medium (DMEM+10% FBS), ScienCell Fibroblast Medium, and FibroGRO Xeno-Free Human Fibroblast Expansion Medium (Millipore) for the BJ, HDF and XFF cells respectively. Feeder cells used were 3001 G irradiated neonatal human foreskin fibroblasts (GlobalStem) and FibroGRO mitomycin C-inactivated xeno-free human neonatal fibroblasts (Millipore). Cell passaging steps pertinent to xeno-free feeder-based and feeder-free reprogramming trials were performed using TrypLE Select (Gibco), an animal product-free cell dissociation reagent.

+ Open protocol
+ Expand
2

Xeno-Free Fibroblast Reprogramming Protocols

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

Cells targeted for reprogramming included BJ neonatal fibroblasts (ATCC), HDF-f fetal fibroblasts, HDF-n neonatal fibroblasts and HDF-a adult fibroblasts (ScienCell), and XFF xeno-free neonatal fibroblasts (Millipore). Expansion culture was carried out in BJ medium (DMEM+10% FBS), ScienCell Fibroblast Medium, and FibroGRO Xeno-Free Human Fibroblast Expansion Medium (Millipore) for the BJ, HDF and XFF cells respectively. Feeder cells used were 3001G irradiated neonatal human foreskin fibroblasts (GlobalStem) and FibroGRO mitomycin C-inactivated xeno-free human neonatal fibroblasts (Millipore). Cell passaging steps pertinent to xeno-free feeder-based and feeder-free reprogramming trials were performed using TrypLE Select (Gibco), an animal product-free cell dissociation reagent.

+ Open protocol
+ Expand
3

Xeno-Free Fibroblast Reprogramming Protocols

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

Cells targeted for reprogramming included BJ neonatal fibroblasts (ATCC), HDF-f fetal fibroblasts, HDF-n neonatal fibroblasts and HDF-a adult fibroblasts (ScienCell), and XFF xeno-free neonatal fibroblasts (Millipore). Expansion culture was carried out in BJ medium (DMEM+10% FBS), ScienCell Fibroblast Medium, and FibroGRO Xeno-Free Human Fibroblast Expansion Medium (Millipore) for the BJ, HDF and XFF cells respectively. Feeder cells used were 3001G irradiated neonatal human foreskin fibroblasts (GlobalStem) and FibroGRO mitomycin C-inactivated xeno-free human neonatal fibroblasts (Millipore). Cell passaging steps pertinent to xeno-free feeder-based and feeder-free reprogramming trials were performed using TrypLE Select (Gibco), an animal product-free cell dissociation reagent.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!