The largest database of trusted experimental protocols

3 protocols using hetastarch

1

Asphyxia-Induced Cardiac Arrest Model

Check if the same lab product or an alternative is used in the 5 most similar protocols
After instrumentation, neuromuscular blockade was achieved by slow intravenous administration of 2 mg/kg of vecuronium bromide (Vecuronium Bromide, Hospira, Lake Forest, IL, USA). CA was induced via asphyxiation by switching off the ventilator. CA was defined as a mean arterial pressure (MAP) of less than 20 mmHg. After 12 min of asphyxia, mechanical ventilation was restarted and CPB was started. Activated coagulation time (ACT) was kept above 250 s by administering heparin (Heparin, SAGENT Pharmaceuticals, Schaumburg, IL, USA). The CPB circuit was primed using a total volume of 21.1 mL priming solution composed of 10 mL of Plasma-Lyte A (Baxter, Deerfield, IL, USA), 10 mL of 6 % Hetastarch (Hospira, Lake Forest, IL, USA), 0.8 mL of 0.406 mEq/mL magnesium sulfate (Magnesium Sulfate, APP Pharmaceuticals, Schaumburg, IL, USA), and 0.3 mL of 3.3 mmol/mL THAM Solution (XVIVO Perfusion AB, Göteborg, Sweden). The hemofiltration circuit was primed with the same solution using a priming volume of 6.9 mL. CPB was manipulated for a total of 30 min in all animals. Vasopressors or inotropic agents were not injected. At the end of CPB operation, the remaining blood in the circuit was collected and slowly reinfused into the animal.
+ Open protocol
+ Expand
2

Placental CD34+ Cells for PNK Generation

Check if the same lab product or an alternative is used in the 5 most similar protocols
Placental CD34+ cells were acquired from healthy donors under fully informed consent. With donor eligibility documentation, tissues were qualified using a series of tests including serology and bacteriology (Lifebank USA). Blood was isolated from healthy donor tissues and processed by red blood cell depletion using Hetastarch (Hospira). The resulting cells were then magnetically labeled using Direct CD34 Progenitor Cell Isolation Kit (Miltenyi Biotec). CD34+ cells were positively selected using AutoMACS Cell Separator following manufacturer’s protocol. Placental CD34+ cells were then cryopreserved in CryoStor CS10 (Biolife Solutions) and stored in liquid nitrogen before use.
For PNK culture, placental CD34+ cells were thawed and cultivated following a three-stage process in the presence of cytokines, including thrombopoietin, SCF, Flt3 ligand, IL-7, IL-15 and IL-2 (Thermo Fisher Scientific), for 35 days to generate PNK cells. Nucleofection of CRISPR reagents was performed at day 5-7 of culture. Cell count and passage were performed every 2–3 days and cell expansion was recorded. At the end of the culture, cell phenotype was evaluated by flow cytometry to confirm that the cells expressed typical NK receptors and cytolytic markers.
+ Open protocol
+ Expand
3

Isolation of CD34+ Cells from Umbilical Cord Blood

Check if the same lab product or an alternative is used in the 5 most similar protocols
Umbilical cord blood was collected from normal full-term delivery after obtaining informed consent from the mothers as a donation for banking, and only cord blood samples not appropriate for banking (< 100 ml) were used in our experiments. We mixed cord blood with 6% hetastarch in 0.9% sodium chloride (Hospira, USA) at a ratio of 4:1 and let it stand for approximately 30 min to allow most of the red cells to form a sediment. Cells in the supernatant was laid onto Ficoll-Paque PLUS (GE Healthcare Bio-Sciences, Pittsburgh, USA) and centrifuged to collect mononuclear cells (MNCs) by depleting the platelets, plasma, and residual red cells. Enrichment of CD34+ cells was performed with two runs of immunomagnetic selection on MiniMACS columns (Miltenyi Biotec, Gladbach, Germany) in accordance with the manufacturer’s instructions.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!