The largest database of trusted experimental protocols

Ac d ap afc

Manufactured by MP Biomedicals
Sourced in United States

Ac-(D)-AP-AFC is a synthetic fluorogenic substrate used in biochemical applications. It is designed to detect and measure the activity of proteases, particularly caspases, which are enzymes involved in apoptosis and other cellular processes. The substrate consists of an acetyl (Ac) group, a D-alanine-proline (D-AP) dipeptide sequence, and a 7-amino-4-trifluoromethylcoumarin (AFC) fluorogenic moiety.

Automatically generated - may contain errors

4 protocols using ac d ap afc

1

Enzyme Kinetics of 3099DOX Activation by FAP

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

Enzyme Kinetics of 3099DOX Activation by FAP

Michaelis-Menten enzyme kinetics for FAP were measured using a SpectraMax M2e microplate reader (Molecular Devices, Sunnyvale, Calif., USA). The assays were performed in FAP buffer (50 mM Tris, 140 mM NaCl, pH 7.5) at 25° C., and the fluorescence continuously monitored at excitation and emission wavelengths of 380 and 460 nm, respectively. Kinetic constants (kcat and Km) were determined using GP-AMC (Bachem, Torrance, Calif., USA), Ac-(D)-AP-AFC (MP Biomedicals, Solon, Ohio, USA) and test article concentrations equivalent to 0.1-5 times their respective Km values, and with 5-10 nM enzyme. All assays were performed in triplicate, and the results were calculated with a nonlinear regression analysis, relying on a Michaelis-Menten curve fit using GraphPad software.

3099DOX at various concentrations ranging from 8.5×10−6 M to 6.9×10−4 M was incubated with 1.34×10−8 M FAP or PREP at 37° C., and released doxorubicin measured. Results of kinetic analysis are shown in FIG. 2. While 3099DOX had essentially no activation with PREP, 3099DOX was activated by FAP with Vmax=5.877×10−9 M/sec, Km=1.12×10−5 M, kcat (Vmax/[E])=0.44 sec−1, and kcat/Km=39171 M−1 sec−1.

+ Open protocol
+ Expand
2

Enzyme Kinetics of 3099DOX Activation by FAP

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

Enzyme Kinetics of 3099DOX Activation by FAP

Michaelis-Menten enzyme kinetics for FAP were measured using a SpectraMax M2e microplate reader (Molecular Devices, Sunnyvale, Calif., USA). The assays were performed in FAP buffer (50 mM Tris, 140 mM NaCl, pH 7.5) at 25° C., and the fluorescence continuously monitored at excitation and emission wavelengths of 380 and 460 nm, respectively. Kinetic constants (kcat and Km) were determined using GP-AMC (Bachem, Torrance, Calif., USA), Ac-(D)-AP-AFC (MP Biomedicals, Solon, Ohio, USA) and test article concentrations equivalent to 0.1-5 times their respective Km values, and with 5-10 nM enzyme. All assays were performed in triplicate, and the results were calculated with a nonlinear regression analysis, relying on a Michaelis-Menten curve fit using GraphPad software.

3099DOX at various concentrations ranging from 8.5×10−6 M to 6.9×10−4 M was incubated with 1.34×10−8 M FAP or PREP at 37° C., and released doxorubicin measured. Results of kinetic analysis are shown in FIG. 2. While 3099DOX had essentially no activation with PREP, 3099DOX was activated by FAP with Vmax=5.877×10−9 M/sec, Km=1.12×10−5 M, kcat (Vmax/[E])=0.44 sec−1, and kcat/Km=39171 M−1 sec−1.

+ Open protocol
+ Expand
3

Enzyme Kinetics of 3099DOX Activation by FAP

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

Enzyme Kinetics of 3099DOX Activation by FAP

Michaelis-Menten enzyme kinetics for FAP were measured using a SpectraMax M2e microplate reader (Molecular Devices, Sunnyvale, Calif., USA). The assays were performed in FAP buffer (50 mM Tris, 140 mM NaCl, pH 7.5) at 25° C., and the fluorescence continuously monitored at excitation and emission wavelengths of 380 and 460 nm, respectively. Kinetic constants (kcat and Km) were determined using GP-AMC (Bachem, Torrance, Calif., USA), Ac-(D)-AP-AFC (MP Biomedicals, Solon, Ohio, USA) and test article concentrations equivalent to 0.1-5 times their respective Km values, and with 5-10 nM enzyme. All assays were performed in triplicate, and the results were calculated with a nonlinear regression analysis, relying on a Michaelis-Menten curve fit using GraphPad software.

3099DOX at various concentrations ranging from 8.5×10−6 M to 6.9×10−4 M was incubated with 1.34×10−8 M FAP or PREP at 37° C., and released doxorubicin measured. Results of kinetic analysis are shown in FIG. 2. While 3099DOX had essentially no activation with PREP, 3099DOX was activated by FAP with Vmax=5.877×10−9 M/sec, Km=1.12×10−5 M, kcat(Vmax/[E])=0.44 sec−1, and kcat/Km=39171 M−1 sec−1.

+ Open protocol
+ Expand
4

Enzyme Kinetics of 3099DOX Activation by FAP

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

Enzyme Kinetics of 3099DOX Activation by FAP

Michaelis-Menten enzyme kinetics for FAP were measured using a SpectraMax M2e microplate reader (Molecular Devices, Sunnyvale, Calif., USA). The assays were performed in FAP buffer (50 mM Tris, 140 mM NaCl, pH 7.5) at 25° C., and the fluorescence continuously monitored at excitation and emission wavelengths of 380 and 460 nm, respectively. Kinetic constants (kcat and Km) were determined using GP-AMC (Bachem, Torrance, Calif., USA), Ac-(D)-AP-AFC (MP Biomedicals, Solon, Ohio, USA) and test article concentrations equivalent to 0.1-5 times their respective Km values, and with 5-10 nM enzyme. All assays were performed in triplicate, and the results were calculated with a nonlinear regression analysis, relying on a Michaelis-Menten curve fit using GraphPad software.

3099DOX at various concentrations ranging from 8.5×10−6 M to 6.9×10−4 M was incubated with 1.34×10−8 M FAP or PREP at 37° C., and released doxorubicin measured. Results of kinetic analysis are shown in FIG. 2. While 3099DOX had essentially no activation with PREP, 3099DOX was activated by FAP with Vmax=5.877×10−9 M/sec, Km=1.12×10−5 M, kcat(Vmax/[E])=0.44 sec−1, and kcat/Km=39171 M−1sec−1.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!