The largest database of trusted experimental protocols

T7 ribomax rnai system

Manufactured by Promega
Sourced in United States

The T7 RiboMAX™ RNAi System is a laboratory tool used for the in vitro synthesis of double-stranded RNA (dsRNA). It provides a simple and efficient method for the production of dsRNA, which is a key component in RNA interference (RNAi) experiments.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using t7 ribomax rnai system

1

Knockdown of Tick HSP70 Gene

Check if the same lab product or an alternative is used in the 5 most similar protocols
The dsRNA was synthesized using the T7 RiboMAX™ RNAi System (Promega, Madison, WI, USA) according to the manufacturer's recommendations. Oligonucleotide primers containing T7 promoter sequences (in italics at 5′-end) were listed in Supplementary Table 2. A dsRNA targeting luciferase used as a negative control was subjected to the same PCR amplification protocol using luciferase-specific primers (Yu et al., 2013 (link)). These dsRNA were maintained at −80°C until use. Unfed adult ticks (N = 50 females per group, two independent groups) were microinjected with 0.5 μL HSP70 dsRNA (about 1 μg RNA) at the base of the fourth right leg of the ventral surface of ticks. Control ticks were microinjected with unrelated luciferase dsRNA. After microinjection, ticks were maintained in an incubator at 25°C and 95% humidity for 24 h and then allowed to feed on rabbits' ears. Four female ticks per group were collected at 5 days of blood feeding for RNA and protein extraction to characterize gene knockdown by real-time quantitative PCR and Western blot with respect to luciferase control. Remaining ticks were allowed to feed until engorgement, which tick mortality, engorgement rate and engorgement weight was determined in individual engorged female ticks.
+ Open protocol
+ Expand
2

Synthesis and Validation of dsRNA Probes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Double-stranded RNA (dsRNA) was synthesized using the T7 RiboMAX™ RNAi System (P1700, Promega, Madison, WI, USA) according to manufacturer’s recommendations. Primers containing T7 promoter sequences (Additional file 1: Table S1) were designed to synthesize the dsRNA. The dsRNA to RhEcR, RhUSP, and Luciferase mRNA had about 500 base pairs (bp) each. Because the R. haemaphysaloides genome sequence is not available, the siRNA specificity and potential off-targets were estimated based on similar regions of the Drosophila melanogaster ortholog gene (accession number XP_021710216) and genome sequences using the dsCheck program [38 (link)]. Also, using BLAST, analyses were conducted using publicly available genome sequences of Ixodes persulcatus, Haemaphysalis longicornis, Dermacentor silvarum, Hyalomma asiaticum, R. sanguineus, R. microplus, and I. scapularis to confirm that the dsRNA was specific to the target genes and to reduce the possibility of off-target effects. A dsRNA targeting luciferase was used as a negative control [39 (link)]. The quality of the dsRNA was determined by electrophoresis on 1.0% agarose gel. The dsRNA was stored at −80 °C until use.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!