The largest database of trusted experimental protocols

Ava1000 100gm

Manufactured by Basler
Sourced in Germany

The AvA1000-100gm is a lab equipment product from Basler. It is designed for weighing samples up to 100 grams. The device provides accurate measurements with a high level of precision.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using ava1000 100gm

1

Imaging Techniques for Cell Dynamics

Check if the same lab product or an alternative is used in the 5 most similar protocols
We employed two imaging techniques to observe the movement of cells in ambient air and sinking in a liquid-filled bath. First, the evolution of jet morphology was observed using a CCD camera (avA1000-100gm, Basler AG Inc., Ahrensburg, Germany), zoom lens, and nano-pulsed light (150 ns, NP-1A, Sugawara Laboratories Inc., Kawasaki, Japan) based on stroboscopic flash photography to design the proper characteristics of cell-laden drops, such as the velocity and number of satellite drops. Each stroboscopic image was recorded at 10 frames per second by synchronizing this equipment using a NI DAQ boards (NI USB6351, National Instruments Corp., Austin, Texas, USA), and the velocity of the leading drop was evaluated. Next, cell behaviors were observed at 12,000 frames per second using a high-speed camera (Fastcam SA3 120 K M3, Photron Inc., San Diego, California, USA), zoom lens, and halogen light (LS-F150HS Light Bank, Seokwang Optical Co., Ltd, Hwaseong, Korea) to analyze the dynamics of cell impact and sinking. The cell-laden drop impacted onto the surface of the transparent acrylic bath filled with a water-miscible fluid, such as ethanol. After the drop impacted the DMEM-filled bath, sinking cells were tracked and the sinking displacement was measured. The measurement was repeated 10 times.
+ Open protocol
+ Expand
2

Inkjet Apparatus for High-Speed Imaging

Check if the same lab product or an alternative is used in the 5 most similar protocols
A home-built inkjet apparatus was employed for this experiment. The system comprised a piezoelectric inkjet nozzle with a diameter of 40 μm (MJ-ATP-01-040 DLC, MicroFab Technologies), a waveform driver (JetDrive, MicroFab Technologies), a nano-pulsed flashlight source (NP-1A, SUGAWARA Laboratories Inc), a CCD camera (avA1000-100gm, Basler) with a high magnification zoom lens (Zoom 6000 Lens System, Navitar), and the 5 × objective lenses (Infinity Corrected Long Working Distance Objective, Mitutoyo). The inkjet nozzle belongs to a squeeze-mode design where a piezo transducer wrapped the outside of a glass capillary tube. The inkjet nozzle pushes out the liquid when receiving the trigger pulse at a jetting frequency of 10 Hz. Based on single-flash high-speed imaging, all jetting images were obtained by the ultra-short pulse flashlight and the CCD camera. The drop watcher system employs a stroboscopic principle to capture the jetting image. The strobe trigger delay time can be adjusted in 1 μs increments. The very short flashlight with a duration of 180 ns avoided significant motion blurring. These components were electrically synchronized and controlled by an embedded controller (cRIO-9035 and NI-9401, National Instruments).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!