The largest database of trusted experimental protocols

7 tesla solarix ftms system

Manufactured by Bruker
Sourced in Germany

The 7 Tesla solariX FTMS system is a high-performance Fourier Transform Mass Spectrometry (FTMS) instrument. It features a 7 Tesla superconducting magnet and is designed for advanced mass spectrometry applications.

Automatically generated - may contain errors

4 protocols using 7 tesla solarix ftms system

1

Spectroscopic Characterization of Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
The specific rotation values and IR spectra were measured using a JASCO P-2000 digital polarimeter and a THERMO Scientific Nicolet iS5 FT-IR spectrophotometer, respectively. ESIMS and HRESIMS were recorded using a BRUKER 7 Tesla solariX FTMS system. NMR spectra were obtained from a JEOL Resonance ECZ 400S or an ECZ 600R NMR spectrometer, with the residual signals of CHCl3 (δH 7.26 ppm) and CDCl3 (δC 77.0 ppm) used as the internal standards for 1H and 13C NMR, respectively. Coupling constants (J) are provided in Hz. Column chromatography was carried out with a silica gel (230~400 mesh, MERCK) column. Thin-layer chromatography was performed on plates precoated with silica gel 60 F254 (0.25-mm-thick, MERCK); the plates then sprayed with 10% (v/v) H2SO4 in methanol, followed by heating to visualize the spots. A normal-phase (NP) HPLC was performed using a system comprised of a HITACHI 5110 pump, a RHEODYNE 7725i injection port and a NP column (YMC pack SIL, 5 μm, 12 nm, 250 × 20 mm, YMC group). Reverse-phase (RP) HPLC was performed using a system comprised of a HITACHI L-2130 pump, a HITACHI L-2455 photodiode array detector, a RHEODYNE 7725i injection port and a RP column (Luna 5 µm C18(2) 100 Å, 250 × 21.2 mm, Phenomenex).
+ Open protocol
+ Expand
2

Instrumental Characterization of Organic Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
Optical rotation values were measured using a JASCO P-1010 digital polarimeter. IR spectra were obtained with a Thermo Scientific Nicolet iS5 FT-IR spectrophotometer. NMR spectra were recorded on a 400 MHz Jeol ECZ NMR spectrometer using the residual CHCl3 (δH 7.26 ppm) and CDCl3 signals (δC 77.0 ppm) as internal standards for 1H and 13C NMR, respectively; coupling constants (J) are presented in Hz. ESIMS and HRESIMS were recorded using a Bruker 7 Tesla solariX FTMS system. Column chromatography was carried out with silica gel (230–400 mesh, Merck). TLC was performed on plates precoated with silica gel 60 F254 (Merck) and RP-18W/UV254 (0.15 mm-thick, Macherey-Nagel), then sprayed with 20% H2SO4 solution followed by heating to visualize the spots. NP-HPLC was performed using a system comprised of a Hitachi L-5110 pump and a Rheodyne 7725i injection port with a normal-phase column (Galaksil® EF-SiO2, 5 μm 120 Å, S/N E08210401; Galak Co., Wuxi, CN). RP-HPLC was performed using a system comprised of a Hitachi L-2130 pump, a Hitachi L-2455 photodiode array detector, and a Rheodyne 7725i injection port with a reverse-phase column (Supelco, Ascentis® C18, 581343-U, 250 mm × 10 mm, 5 μm).
+ Open protocol
+ Expand
3

Spectroscopic Analysis of Organic Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
Optical rotation values were measured using a JASCO P-1010 digital polarimeter. IR spectra were obtained with a Thermo Scientific Nicolet iS5 FT-IR spectrophotometer. NMR spectra were recorded on a 400 MHz Jeol ECZ NMR spectrometer using the residual CHCl3 (δH 7.26 ppm) and CDCl3 signals (δC 77.0 ppm) as internal standards for 1H and 13C NMR, respectively; coupling constants (J) are presented in Hz. ESIMS and HRESIMS were recorded using a Bruker 7 Tesla solariX FTMS system. Column chromatography was carried out with silica gel (230–400 mesh, Merck). TLC was performed on plates precoated with silica gel 60 F254 (Merck) and RP-18W/UV254 (0.15 mm-thick, Macherey-Nagel), then sprayed with 10% H2SO4 solution followed by heating to visualize the spots.
+ Open protocol
+ Expand
4

Spectroscopic Analysis of Compounds

Check if the same lab product or an alternative is used in the 5 most similar protocols
For IR spectra, a Nicolet iS5 FT-IR spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used. Optical rotation values were measured using a Jasco P-1010 digital polarimeter (Jasco, Tokyo, Japan). NMR spectra were measured with a Jeol ECZ 400 MHz spectrometer (Jeol, Tokyo, Japan). ESIMS and HRESIMS analyses were conducted using the Bruker 7 Tesla solariX FTMS system (Bruker, Bremen, Germany). Column chromatography was carried out with silica gel (230–400 mesh, Merck, Darmstadt, Germany). Thin layer chromatography (TLC) was performed on plates precoated with Kieselgel 60 F254 (0.25 mm, Merck), then sprayed with 10% H2SO4 solution followed by heating to visualize the spots. Normal-phase high performance liquid chromatography (NP-HPLC) was performed using a system comprising a pump (L-7110, Hitachi, Tokyo, Japan), an injection port (Rheodyne 7725i; Rohnert Park, CA, USA) and a semi-preparative normal-phase column (YMC-Pack SIL, 250 × 20 mm, 5 μm; Sigma-Aldrich, St. Louis, MO, USA). Reverse-phase HPLC (RP-HPLC) was performed using a system comprising a Hitachi L-2130 pump, a Hitachi L-2455 photodiode array detector, a Rheodyne 7725i injection port and a semi-preparative reverse-phase column (Luna, 5 μm, C18(2) 100Å, AXIA, 250 × 21.2 mm; Phenomenex, Torrance, CA, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!