The largest database of trusted experimental protocols

3 protocols using ncl l end

1

Immunohistochemical Profiling of OSCC

Check if the same lab product or an alternative is used in the 5 most similar protocols
For immunohistochemical staining, formalin-fixed, paraffin-embedded human OSCC tissue sections were used. The primary antibodies used were as follows: anti-NOTCH3, rabbit polyclonal, 1:200 (ab23426, Abcam, CA, USA); anti-SMA, mouse monoclonal, 1:100 (M0851, Dako, Glostrup, Sweden). Antigen retrieval was performed according to the manufacturer’s protocol. EnVision+ Dual Link (Dako) was used for secondary antibody, and coloration was conducted with diamino-benzidine substrate. For immunofluorescent double-staining, anti-NOTCH3, 1:200 (Abcam), SMA, 1:100 (mouse monoclonal, M0851, Dako or rabbit monoclonal, Clone SP171, Spring Bioscinece, CA, USA), CD34, 1:100 (mouse monoclonal, NCL-L-END, Leica Biosystems, Wetzlar, Germany) and Cytokeratin, 1:100 (mouse monoclonal, Clone AE1/AE3, M3515, Dako) were used as a primary antibody. For antigen retrieval, the sections were treated with Tris buffer (pH = 7.4) containing 0.1 mg/ml trypsin for 30 min at 37°C for CD34 antibody. Alexa Fluor 488 goat anti-rabbit IgG (A11008, Invitrogen, CA, USA) and Alexa Fluor 594 goat anti-mouse IgG (A11005, Invitrogen) were used as secondary antibody. DAPI was used for nuclear staining. The immunofluoroscent images were captured and analyzed using Axioskop2 plus microscope (Carl Zeiss, Jena, Germany).
+ Open protocol
+ Expand
2

Quantitative Analysis of Tumor Vasculature

Check if the same lab product or an alternative is used in the 5 most similar protocols
To characterize the tumor vasculature, the mean intratumoral MVD was quantitatively assessed according to immunohistochemical CD34 staining. We obtained formalin-fixed specimens embedded in paraffin of the 15 patients who underwent surgical tumor resection by thoracotomy. The specimens were cut into 4-μm slices and fixed to histology slides (X-tra, Leica Biosystems, Nussloch, Germany). After hematoxylin/eosin staining, the slides were stained with CD34 antibody (1:30, NCL-L END, Novocastra, Leica Biosystems, Nussloch, Germany) using an automated staining system (BenchMark XT, Ventana Medical Systems, Oro Valley, AZ, USA). The slides were scanned with a slide scanner (iScan Coreo, Ventana Medical Systems). A pathologist blinded to clinical and imaging data performed the histopathological analysis by visually counting the positive microvessels on the scanned images using public domain software (imageJ, http://rsbweb.nih.gov/ij).
+ Open protocol
+ Expand
3

Immunohistochemical Analysis of Tissue Samples

Check if the same lab product or an alternative is used in the 5 most similar protocols
FVMs were embedded in paraffin and cut into 3-μm sections. After removing the paraffin, the sections were rehydrated, blocked, and incubated with primary antibodies overnight. The next morning, the sections were incubated with the secondary antibodies for 30 min at room temperature. Nuclei were counterstained with Hoechst 33342 (H3570, 1:400 dilution; Life Technologies, Gaithersburg, MD). The primary antibodies were tenascin-C supplied by Juntendo University (20 μg/ml), α-smooth muscle actin (α-SMA, ab21027, 1:50 dilution; Abcam, Cambridge, MA), CD34 (NCL-L-END, 1:2000 dilution; Leica Biosystems, Newcastle, UK), glial fibrillary acidic protein (GFAP, Z0334, 1:500 dilution; Dako, Glostrup, Denmark), integrin αV (AB1930, 1:1000 dilution; Millipore, Bedford, MA), smooth muscle myosin heavy chain SM1 (7599, 1:3000; YAMASA, Tokyo, Japan), and SM2 (7601, 1:400; YAMASA). The secondary antibodies were anti-mouse Alexa Fluor 488 (A11001, 1:800 dilution; Life Technologies), anti-rat Alexa Fluor 488 (A11006, 1:800 dilution; Life Technologies), anti-mouse Alexa Fluor 647 (A21247, 1:800 dilution; Life Technologies), anti-goat Alexa Fluor 647 (A21469, 1:800 dilution; Life Technologies), and anti-rabbit Alexa Fluor 647 (A21244: 1:200 dilution; Life Technologies). Sections were examined and photographed with a fluorescence microscope (BZ-9000; Keyence, Osaka, Japan).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!